Pressurized Hydrocarbon Liquids Study Calibration Report

Table of Contents

Nome	nclatuı	re / Glossary	8
List of	Figure	s 1	.5
List of	Tables		.7
List of	Equati	ons1	.9
1.0	Introd	luction 2	20
1.1	Pur	pose 2	20
1.2	Org	anization 2	20
2.0	Backg	round 2	21
2.1	Stat	istical terms and nomenclature 2	21
2.	1.1	Quantities and units 2	21
2.	1.2	Measurement 2	21
2.	1.3	Devices for measurement 2	22
2.	1.4	Properties of measuring devices 2	23
2.2	Calo	culation of statistical parameters 2	23
3.0	Summ	ary of Instrument Measurement Uncertainty Estimates	25
3.1	Sun	nmary of Bernhardt Site Instruments 2	25
3.2	Cor	iolis Meter3	6
3.	2.1	Description and principle of operation	6
3.	2.2	Output specifications 3	6
3.	2.3	Summary of calibration/proving procedures 3	57
3.	2.4	Summary of calibration results	9
3.	2.5	List of related files / documentation 4	4
3.3	The	rmal Mass Flow Rate (Fox Thermal FT3 Model) 4	6
3.	3.1	Description and principle of operation 4	6
3.	3.2	Output specifications 4	17
3.	2.3	Summary of calibration procedures 4	17
3.	2.4	Summary of calibration results5	0
3.	2.5	List of related files / documentation6	60
3.4	Van	e Anemometer	51

3.4.1	Description and principle of operation
3.4.2	Output specifications
3.4.3	Summary of calibration procedures62
3.4.4	Summary of calibration results
3.4.5	List of related files / documentation67
3.5 AI	3B Total Flow
3.5.1	Description and principle of operation
3.5.2	Output specifications 69
3.5.3	Summary of calibration procedures69
3.5.4	Summary of calibration results
3.5.5	List of related files / documentation71
3.6 Lie	quid Level Sensor (2100 DLS)
3.6.1	Description and principle of operation72
3.6.2	Output specifications
3.6.3	Summary of calibration procedures72
3.6.4	Summary of calibration results73
3.6.5	List of related files / documentation74
3.7 Sc	lar Radiation Meter (Pyranometer)75
3.7.1	Description and principle of operation75
3.7.2	Output specifications
3.7.3	Summary of calibration procedures76
3.7.4	Summary of calibration results77
3.7.5	List of related files / documentation77
4.0 Pres	sure Indicating Transducer (PIT)
4.1 Ba	ackground
4.2 Pľ	T179
4.2.1	Description and principle of operation
4.2.2	Output specifications
4.2.3	Summary of calibration procedures79
4.2.4	Summary of calibration results
4.2.5	List of related files / documentation81

4.3	PIT2	2٤	32
4.3	8.1	Description and principle of operation	32
4.3	3.2	Output specifications	32
4.3	3.3	Summary of calibration procedures	32
4.3	8.4	Summary of calibration results	32
4.3	8.5	List of related files / documentation	34
4.4	PIT3	βξ	35
4.4	1.1	Description and principle of operation	35
4.4	1.2	Output specifications	35
4.4	1.3	Summary of calibration procedures	35
4.4	1.4	Summary of calibration results	35
4.4	1.5	List of related files / documentation	36
4.5	PIT4	٤٤	37
4.5	5.1	Description and principle of operation	37
4.5	5.2	Output specifications	37
4.5	5.3	Summary of calibration procedures	37
4.5	5.4	Summary of calibration results	37
4.5	5.5	List of related files / documentation	38
4.6	PIT5	5ε	39
4.6	5.1	Description and principle of operation	39
4.6	5.2	Output specifications	39
4.6	5.3	Summary of calibration procedures	39
4.6	5.4	Summary of calibration results	39
4.6	5.5	List of related files / documentation) 0
4.7	PITE	5 <u>c</u>) 1
4.7	7.1	Description and principle of operation	€
4.7	7.2	Output specifications) 1
4.7	7.3	Summary of calibration procedures) 1
4.7	7.4	Summary of calibration results) 1
4.7	7.5	List of related files / documentation) 2
4.8	PIT7	7 <u>c</u>) 3

4	.8.1	Description and principle of operation	. 93
4.	.8.2	Output specifications	. 93
4.	.8.3	Summary of calibration procedures	. 93
4.	.8.4	Summary of calibration results	. 93
4.	.8.5	List of related files / documentation	. 93
4.9	PIT	3	. 94
4.	.9.1	Description and principle of operation	. 94
4.	.9.2	Output specifications	. 94
4.	.9.3	Summary of calibration procedures	. 94
4.	.9.4	Summary of calibration results	. 94
4.	.9.5	List of related files / documentation	. 94
4.10) PITS	Э	. 95
4.	.10.1	Description and principle of operation	. 95
4.	.10.2	Output specifications	. 95
4.	.10.3	Summary of calibration procedures	. 96
4.	.10.4	Summary of calibration results	. 96
4.	.10.5	List of related files / documentation	. 96
5.0	Resist	ance Temperature Detector (RTD)	. 97
5.1	Bac	kground	. 97
5.2	RTD	91	. 99
5	.2.1	Description and principle of operation	. 99
5	.2.2	Output specifications	. 99
5	.2.3	Summary of calibration procedures	. 99
5	.2.4	Summary of calibration results	. 99
5	.2.5	List of related files / documentation	100
5.3	RTD)2 1	101
5	.3.1	Description and principle of operation	101
5	.3.2	Output specifications	101
5	.3.3	Summary of calibration procedures	101
5	.3.4	Summary of calibration results	101
5.	.3.5	List of related files / documentation	102

5.4	RTD	03	103
5.	4.1	Description and principle of operation	103
5.	4.2	Output specifications	103
5.	4.3	Summary of calibration procedures	103
5.	4.4	Summary of calibration results	103
5.	4.5	List of related files / documentation	104
5.5	RTD	04	105
5.	5.1	Description and principle of operation	105
5.	5.2	Output specifications	105
5.	5.3	Summary of calibration procedures	105
5.	5.4	Summary of calibration results	105
5.	5.5	List of related files / documentation	106
5.6	RTD	05	107
5.	6.1	Description and principle of operation	107
5.	6.2	Output specifications	107
5.	6.3	Summary of calibration procedures	107
5.	6.4	Summary of calibration results	107
5.	6.5	List of related files / documentation	107
5.7	RTD	06	108
5.	7.1	Description and principle of operation	108
5.	7.2	Output specifications	108
5.	7.3	Summary of calibration procedures	108
5.	7.4	Summary of calibration results	108
5.	7.5	List of related files / documentation	109
5.8	RTD	07	110
5.	8.1	Description and principle of operation	110
5.	8.2	Output specifications	110
5.	8.3	Summary of calibration procedures	110
5.	8.4	Summary of calibration results	110
5.	8.5	List of related files / documentation	110
5.9	RTD	016	111

[5.9.1	Description and principle of operation	111
ŗ	5.9.2	Output specifications	111
Į	5.9.3	Summary of calibration procedures	111
Į	5.9.4	Summary of calibration results	111
ŗ	5.9.5	List of related files / documentation	111
6.0	Refere	ences	112
7.0	Calibra	ation Records	109

Nomenclature / Glossary

a(y)	Limit of the range of uncertainty due to random errors about a single measurementy
b(y)	Limit of the range of uncertainty due to systematic errors about a single measurement y
с(у)	Limit of the range of uncertainty due to combined random and systematic errors about a single parameters y
e	Estimate of systematic error
n	Number of repeated measurements.
t	Value of Student's t-distribution
t95, n-1	The value of the t-distribution for (n-1) degrees of freedom and for a two-sided probability of 95 percent
V	Variance, σ ²
W	Range of a set of data
\overline{x}	Observed mean value of a set of data
x	Observed value of a variable
\overline{y}	Observed mean value corrected for bias
у	Observed value of a variable corrected for bias
μ	Mean of Gaussian normal distribution
σ	Standard deviation of a Gaussian normal distribution
Φ	Degrees of freedom
BFSL	Best fit straight line
СМ	Coriolis meter
DC	Direct current
FSO	Full scale output
PIT	Pressure indicating transducer
PRV	Pressure relief valve

RTD	Resistance temperature detectors
V	Volts
VDC	Volts (direct current)
VOC	Volatile organic carbons
BF	Buoyancy factor
BLM	Bureau of Land Management
BPV	Base prover volume
BVC	Buoyancy vapor correction
CPL	Correction for the effect of pressure on liquid
CPLm	Correction factor for the effect of pressure on a liquid passing through a meter (during a proof)
CPL _{MM}	Pressure correction factor of the master meter
CPL _{MUT}	Pressure correction factor of the meter under test
CPL_{p}	Correction factor for the effect of pressure on a liquid in a prover
CPSp	Correction factor for the effect of pressure on steel on a liquid in a prover
CTL	Correction for the effect of temperature on liquid
CTL _m	Correction factor for the effect of temperature on a liquid passing through a meter (during a proof)
CTL _{MM}	Temperature correction factor of the master meter
CTL _{MUT}	Temperature correction factor of the meter under test
CTL_{p}	Correction factor for the effect of temperature on a liquid in a prover
CTSp	Correction factor for the effect of temperature on steel on a liquid in a prover
DG	Coriolis drive gain
DMF	Density meter factor
DSF	Dynamic start/finish
GVF	Gas void fraction
IPC	Immersed pipe correction

ISV _{MM}	Indicated standard volume of the master meter	
ISV _{MUT}	Indicated standard volume of the meter under test	
IV _{MM}	Indicated volume of the master meter	
IV _{MUT}	Indicated volume of the meter under test	
MF_{DG}	Meter factor adjusted for high drive gain	
MF _{MM}	Meter factor of the master meter	
MF _P	Meter factor due to proving	
MM	Master meter	
MUT	Meter under test	
NIST	National Institute of Standards and Technology	
NKF	Nominal K-factor	
RM	Reference meter	
SSF	Static start/finish	
SVP	Small volume piston	
TSM	Transfer standard method	
UUT	Unit under test	
V ₆₀	Volume at base conditions	
VCF	Volume correction factor	
V _{t,P}	Volume at alternate conditions	
$ ho_{gas}$	Density of the gas	(kg/m ³)
ρliquid	Density of the "bubble-free", standard density (via API 11.1)	(kg/m ³)
$ ho_{mix}$	Density of the two-phase flow	(kg/m ³)
CAL-V	Calibration validation (in-situ calibration)	
Cp	Gas heat capacity at constant pressure	(J/g* ⁰ C)
CSV	Current sense voltage	
DUT	Device under test	

FT3	Fox thermal meter model 3	
I	current supplied to the heated element	(Ampere)
k _{act}	Gas thermal conductivity of the actual gas composition	(W/m/K)
k _{cal}	Gas thermal conductivity of the calibrated gas composition	(W/m/K)
Μ	Mass flow rate	(g/s)
MSCFD	Thousands of standard cubic feet per day	
n	Constant	(unitless)
Pr _{act}	Prandtl number of the actual gas composition	(unitless)
Pr _{cal}	Prandtl number of the calibrated gas composition	(unitless)
V _{act}	Gas velocity of the actual gas composition	(m/s)
V _{cal}	Gas velocity of the calibrated gas composition	(m/s)
R ₁	The electrical resistance of the heated RTD element	(ohms)
μ_{act}	Gas dynamic viscosity of the actual gas composition	(Pa*s)
μ _{cal}	Gas dynamic viscosity of the calibrated gas composition	(Pa*s)
ΔΤ	Temperature difference between the heated and reference RTDs	(⁰ C)
A _{75mm}	Cross sectional area of a pipe with diameter of 75mm	(m²)
A _{77.93mm}	Cross sectional area of the in-situ pipe	(m²)
PF _{75mm}	Position factor based on a pipe diameter of 75mm ($v_{average}$ / v_{local} = 0.796	5) (-)
PF77.93mm	Position factor based on a pipe diameter of 75mm ($v_{average}$ / v_{local} = 0.802	2) (-)
Q _{actual}	Actual gas flowrate through the pipeline	(m³/h)
Q_{measured}	Measured flow rate	(m³/h)
QMS	Quality Management Systems	
r	Distance of each cup from the rotational axis	(m)
U	Velocity of the measured gas	(m/s)
v	Gas correction value due to compositional change	(m/s)
V _{0,real}	Actual smallest starting value	(m/s)

V _{0,spec}	Specified smallest starting value	(m/s)	
Vactual	Actual local velocity	(m/s)	
Vcal	Gas velocity measured by the vane anemometer during	the calibration (m/s)	
Vmeasured	Local velocity measured by the vane anemometer	(m/s)	
Vref	Reference gas velocity from the vane anemometer calib	ration (m/s)	
ρ _{real}	Actual gas density	(kg/m³))
ω	Rotational speed of the vane wheel	(rad/s)	1
Qv	Standard volume flow rate	(sft³/hr))
Cd	Orifice plate discharge coefficient	(-))
Ev	Velocity approach factor	(-))
Y ₁	Upstream gas expansion factor	(-))
d	is the orifice bore diameter	(in))
Gr	Real gas relative density	(-))
Zs	Compressibility factor of gas at standard conditions	(-))
Z _{f1}	Compressibility factor of the upstream gas at flowing co	nditions (-))
PCCU	Portable configuration and calibration unit (software)		
P _{f1}	Upstream pressure	(psia))
T _f	Absolute temperature of gas at flowing conditions	(degree Rankine))
h _w	Differential pressure	(inches of water at 60°F))
β	Ratio of the orifice bore diameter to the pipe diameter	(-))
к	Isentropic exponent of the gas = C_p/C_v	(-))
MWgas	Molecular weight of the measured gas	(lb/lb-mol))
MW _{air}	Molecular weight of air	(lb/lb-mol))
Z _{b,air}	Compressibility factor of air at 14.73 psia and 60°F	(-))
Z _{b,gas}	Compressibility factor of the measured gas at 14.73 psia	and 60°F (-))
DLS	Digital liquid sensor		-

EEPROM	Electrically erasable programmable read-only memory	
EFM	Electronic flow measurement	
PLC	Programmable logic controller	
RTU	Remote terminal unit	
ADC	Analog-to-digital converter	
High_ADC	ADC reading at the top of the range (used during calibration of	PITs and RTDs)
Low	Calculated pressure at the bottom of the range (used during cal and RTDs)	libration of PITs
Low_ADC RTDs)	ADC reading at the bottom of the range (used during calibr	ation of PITs and
Range	Total range of the analog device (used during calibration of PITs	s and RTDs)
Raw_ADC	Current reading of the ADC (used during calibration of PITs and	RTDs)
TTL	Transistor-to-transistor logic	
Modbus	Method used to for transmitting information over serial lines b	etween electronic
	devices	
R	Electrical resistance	(ohms)
R ρ		(ohms) (ohms*m)
	Electrical resistance	
ρ	Electrical resistance Resistivity of the resistor material	(ohms*m)
ρ I	Electrical resistance Resistivity of the resistor material Length of the pressure sensor	(ohms*m) (m)
ρ Ι Α	Electrical resistance Resistivity of the resistor material Length of the pressure sensor Cross sectional area of the pressure sensor	(ohms*m) (m) (m ²)
ρ Ι <u>Α</u> Α	Electrical resistance Resistivity of the resistor material Length of the pressure sensor Cross sectional area of the pressure sensor Constant (Callendar-Van Dusen equation)	(ohms*m) (m) (m ²) (-)
ρ Ι Α Β	Electrical resistance Resistivity of the resistor material Length of the pressure sensor Cross sectional area of the pressure sensor Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation)	(ohms*m) (m) (m ²) (-) (-)
ρ Ι Α Α Β C	Electrical resistance Resistivity of the resistor material Length of the pressure sensor Cross sectional area of the pressure sensor Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation)	(ohms*m) (m) (m ²) (-) (-)
ρ I A B C CVD	Electrical resistance Resistivity of the resistor material Length of the pressure sensor Cross sectional area of the pressure sensor Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation) Callendar-Van Dusen	(ohms*m) (m) (m ²) (-) (-) (-)
ρ Ι Α Α Β C CVD Ι _{EX}	Electrical resistance Resistivity of the resistor material Length of the pressure sensor Cross sectional area of the pressure sensor Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation) Constant (Callendar-Van Dusen equation) Callendar-Van Dusen equation) Callendar-Van Dusen	(ohms*m) (m) (m ²) (-) (-) (-) (-)

Т	Recording temperature	(°C)
V ₀	Measured RTD voltage	(VDC)
α	Temperature coefficient	(-)
β	Constant	(-)
δ	Constant	(-)

List of Figures

Figure No.		Page
3-1	Instrumentation map of the test site as of the winter sampling week	24
3-2	Instrumentation map of the test site as of the summer sampling week	25
3-3	Instrumentation map of the test site as of the post-summer sampling week	26
3-4	Comparison of zero flow and full flow in Coriolis tubes	34
3-5	In-field testing setup	37
3-6	Master meter MF versus flow rate	39
3-7	Concept of thermal mass flow meters	44
3-8a	Circuitry of CAL-V measurement mode of FT3 model	47
3-8b	Circuitry of normal measurement mode of FT3 model	47
3-9	Pre-test and post-test calibration for FT3 S/N 21776 (gas curve 2)	49
3-10	Pre-test and post-test calibration for FT3 S/N 21773 (gas curve 2)	50
3-11	Pre-test and post-test calibration for FT3 S/N 21776 (gas curve 1)	51
3-12	Pre-test and post-test calibration for FT3 S/N 21776 (gas curve 3)	52
3-13	Pre-test and post-test calibration for FT3 S/N 21773 (gas curve 1)	52
3-14	Pre-test and post-test calibration for FT3 S/N 21775 (gas curve 1)	53
3-15	Pre-test and post-test calibration for FT3 S/N 21775 (gas curve 2)	53
3-16a	Measured flow rate from the Fox thermal mass meter (pre-adjustment)	55
3-16b	Measured flow rate from the Fox thermal mass meter (post-adjustment)	55
3-17	Vane anemometer wheel	57
3-18	Vane anemometer calibration results with tolerance limit	59
3-19	Pre-test calibration and post-test as-found for the vane anemometer	61
3-20	Vane anemometer as-found results with tolerance limits	62
3-21	Comparison of the three gas meters during summer testing	63
3-22	As-found test on the liquid level sensor	69
3-23	Spectral response of the pyranometer compared to the solar spectrum	71
4-1	As-found test of PIT1	77
4-2	Calibration result of PIT2	79
4-3	As-found test of PIT2	79
4-4	As-found test of PIT3	82
4-5	As-found test of PIT4	84
4-6	Calibration result of PIT5	86
4-7	Calibration result of PIT6	88
4-8	Location of siphon hole within down-comer	91
5-1	As-found test of RTD1	96
5-2	As-found test of RTD2	98
5-3	As-found test of RTD3	100
5-4	As-found test of RTD4	102
5-5	As-found test of RTD6	105

List of Tables

3-1Pressure Transducer on the High-Pressure Separator273-2RTDs on the High-Pressure Separator272-2Flaw Data Macauman and the High Dressure Separator20
3-2RTDs on the High-Pressure Separator27
3-3 Flow Rate Measurement on the High-Pressure Separator 28
3-4 Instruments on the Separator-to-Tank Pipe Segment and Tank Headspace 29
3-5RTDs on the Tank30
3-6 Temperature and Pressure Monitors on the Tank-to-Burner Pipe Segment 31
3-7 Flow Rate Measurement on the Tank-to-Burner Pipe Segment 32
3-8Miscellaneous Instruments33
3-9 Output specifications of Coriolis meter 34
3-10Model 5700 Transmitter Specifications35
3-11 Summary of Coriolis Calibration and Proving Tests 37
3-12Coriolis's Meter Factor Summary40
3-13 Flash Gas Compositions (in mol%) For Fox FT3 Factory Calibrations 46
3-14 Summary of FT3's Calibration and CAL-V Records 48
3-15Specifications of Vane Wheel Flow Sensor ZS2558
3-16 Specifications of ABB Total Flow (Model XFC G4 6413) 65
3-17ABB's Static Pressure Calibration67
3-18ABB's Dynamic Pressure Calibration67
3-19ABB's Temperature Calibration67
3-20Model 2100 DLS Specifications68
3-21Temperature Offset of DLS Sensors70
3-22Specifications of SR05-DA272
4-1Specifications of PIT175
4-2Specifications of PIT278
4-3Specifications of PIT381
4-4Specifications of PIT483
4-5Specifications of PIT585
4-6Specifications of PIT687
4-7Specifications of PIT789
4-8Specifications of PIT890
4-9Specifications of PIT991
5-1 Callendar-Van Dusen Coefficients Corresponding to Common RTDs 94
5-2Specifications of RTD195
5-3Specifications of RTD297
5-4Specifications of RTD399
5-5Specifications of RTD4101
5-6Specifications of RTD5103

Table No.Page5-7Specifications of RTD61045-8Specifications of RTD71065-9Specifications of RTD16107

List of Equations

Equation No.		Page
2-1	Calculation of standard deviation of a Gaussian distribution	22
2-2	Calculation of variance	22
2-3	Calculation of uncertainty due to random error	22
2-4	Calculation of uncertainty due to systematic error	23
2-5	Calculation of combined uncertainty due to random and systematic errors	23
3-1	Calculation of Coriolis's meter factor based on master meter	38
3-2	Calculation of Coriolis's meter factor based on pulses	38
3-3a	Calculation of gas void fraction	41
3-3b	Calculation of gas void fraction	41
3-4	Calculation of gas void fraction (re-arranged)	41
3-5	Calculation of adjustment of oil volume to base conditions	42
3-6a	Calculation of the electrical power supplied to the heated RTD element	44
3-6b	Thomas's equation of mass flow rate calculation	45
3-7	Compositional adjustment of velocity in thermal mass meters	54
3-8	Calculation of gas velocity from rotational speed	57
3-9	Calculation of gas velocity from vane calibration procedure	58
3-10	Calculation of actual local gas velocity (vane calibration)	59
3-11a	Calculation of actual smallest starting value (vane calibration)	60
3-11b	Calculation of velocity correction factor (vane calibration)	60
3-12	Calculation of actual gas flow rate in pipeline	60
3-13	Calculation of standard volume flow rate	64
3-14	Calculation of velocity approach factor	64
3-15	Calculation of upstream gas expansion factor	65
3-16	Calculation of real gas density	65
4-1	Calculation of pressure transducer resistance	74
4-2	Calculation of PIT calibration value (PIT calibration)	76
5-1	Calculation of temperature coefficient	93
5-2a	The Callendar-Van Dusen (CVD) equation for -200°C ≤ T ≤ 0°C	93
5-2b	The Callendar-Van Dusen (CVD) equation for T > 0°C	93
5-3a	Calculation of "A" (CVD equation)	94
5-3b	Calculation of "B" (CVD equation)	94
5-3c	Calculation of "C" (CVD equation)	94
5-3d	Calculation of " δ " (CVD equation)	94
5-4	Quadratic form of the CVD equation	94

1.0 Introduction

1.1 <u>Purpose</u>

The purpose of the pressurized hydrocarbon (HC) liquids sampling and analysis (PHLSA) study is described in paragraph 37 of the Consent Decree:

"The purpose of the study is to isolate individual variables of the sampling and analytical methods typically used to obtain information regarding the flash potential and makeup of pressurized hydrocarbon liquids and to identify protocols for determining how these samples can be reliably obtained, handled, and analyzed to produce accurate analytical results for practical application in modeling flashing losses."

Based on this purpose, an accurate analytical results used for practical application in modeling flashing losses is of great interest. In other words, a true characterization of all of the independent variables required to estimate flashing losses is needed to achieve the specified purpose. To do so, the Bernhardt test site was instrumented with over 30 measurement devices that encapsulate what is believed to provide an accurate representation of the pertinent process as a function of space and time.

1.2 Organization

This report depicts several chapters and sections:

- Chapter 2: provides background information on statistical terms and nomenclature that will be used throughout this report. Calculation of the relevant statistical parameters will be demonstrated.
- Chapter 3: provides a detailed outlook of the majority of instrumentations used in the test site. Each section will depict a different measurement device or sensor.
- Chapter 4: provides a detailed description of the pressure transducers used in the test site. Each section will depict a different measurement device.
- Chapter 5: provides a detailed description of the resistance temperature detectors used in the test site. Each section will depict a different measurement device.
- References: a bibliographic list of sources used in this report.
- Appendices: supporting documentation relating to chapters 2 through 5 will be shown.

2.0 Background

2.1.1 Quantities and units

2.1 Statistical terms and nomenclature

This report will use the statistical terms defined by the third edition (2008) of the "International vocabulary of metrology – Basic and general concepts and associated terms (VIM)" [1].

Property of a phenomenon, body, or substance, where the Quantity: property has a magnitude that can be expressed as a number and a reference. Kind: Aspect common to mutually comparable quantities. Quantity value: Number and reference together expressing magnitude of a quantity 2.1.2 Measurement Measurement: Process of experimentally obtaining one of more quantity values that can reasonably be attributed to a quantity. Metrology: Science of measurement and its application. Measurand: Quantity intended to be measured. Measurement result: Set of quantity values being attributed to a measurand together with any other available relevant information. Measurement quantity value: Quantity value representing a measurement result. Measurement accuracy: Closeness of agreement between indications of measured quantity values obtained by replicate measurements on the same or similar objects under specified conditions. Measurement trueness: Closeness of agreement between the average of an infinite number of replicate measured quantity values and a reference quantity value. Measurement precision: Closeness of agreement between indications of measured quantity values obtained by replicate measurements on the same or similar objects under specified conditions. Measurement error: Measured quantity value minus a reference value.

PHLSA Study Report, Appendix IV.4

Systematic measurement error:	Component of measurement error that in replicate measurements remains constant or varies in a predictable manner.
Measurement bias:	Estimate of a systematic measurement error.
Random measurement error:	Component of measurement error that in replicate measurements varies in an unpredictable manner.
Measurement uncertainty (MU):	Non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used.

- Standard MU: Measurement uncertainty expressed as a standard deviation.
- Combined standard MU: Standard measurement uncertainty that is obtained using the individual standard measurement uncertainties associated with the input quantities in a measurement model.
- Input quantity: Quantity that must be measured, or a quantity, that value of which can be otherwise obtained, in order to calculate a measured quantity value of a measurand.
- Output quantity: Quantity, the measured value of which is calculated using the values of input quantities.
- 2.1.3 Devices for measurement
- Measuring instrument: Device used for making measurements, alone or in conjunction with one of more supplementary devices.

Measuring system: Set of one or more measuring instruments and often other devices, including any reagent and supply, assembled and adapted to give information used to generate measured quantity values within specified intervals for quantities of specified kinds.

Reference quantity value: Quantity value used a basis for comparison with values of quantities of the same kind.

Measuring transducer: Device, used in measurement, that provides an output quantity having a specified relation to the input quantity.

Sensor:	Element of a measuring system that is directly affected by
	a phenomenon, body, or substance carrying a quantity to be measured.
Detector:	Device or substance that indicates the presence of a phenomenon, body, or substance when a threshold value
	of an associated quantity is exceeded.

2.1.4 Properties of measuring devices

Indication:	Quantity value provided by a measuring instrument or a measuring system.					
Instrumental bias:	Average of replicate indications minus a reference quantity value.					
Instrumental drift:	Continuous or incremental change over time in indication, due to changes in metrological properties of a measuring instrument.					
Calibration diagram:	Graphical expression of the relation of indication and corresponding measurement result.					
Calibration curve:	Expression of the relation between indication and corresponding measured quantity value					

2.2 <u>Calculation of statistical parameters</u>

The following calculations and statistical definitions are obtained from API Chapter 13.1 – "Statistical Aspects of Measuring and Sampling" [2].

Standard deviation of a Gaussian distribution:

$$\sigma(y) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y}_i)^2}$$
(2-1)

Variance:

$$V(y) = \sigma^2(y) \tag{2-2}$$

Uncertainty due to random error:

$$a(y) = (t_{95,n-1}) * \sigma(y)$$
 (2-3)

Uncertainty due to systematic error:

$$b(y) = 0.95 \left| \frac{(e_1 - e_2)}{2} \right| \tag{2-4}$$

Combined uncertainty due to (2-3) and (2-4):

$$c(\overline{y}) = \sqrt{a^2(\overline{y}) + b^2(\overline{y})}$$
(2-5)

The equations listed above may not encapsulate all the statistical parameters necessary for the calculation of uncertainty for each of the meters to be discussed in the next chapter. Hence, in the case of an uncertainty calculation different than that listed in this sub-section, it will be shown under each meter, individually.

3.0 Summary of Instrument Measurement Uncertainty Estimates

3.1 <u>Summary of Bernhardt Site Instruments</u>

The test site includes over 30 instrumentation installed on different process units (e.g. separator, tank, VOC burner etc.) and piping. All instruments transmit to an automation stand / data-logger via Wi-Fi, and are downloaded manually in a csv file. Throughout the study there have been three different instrument configurations: (1) winter; (2) summer and (3) post-summer, as shown below.

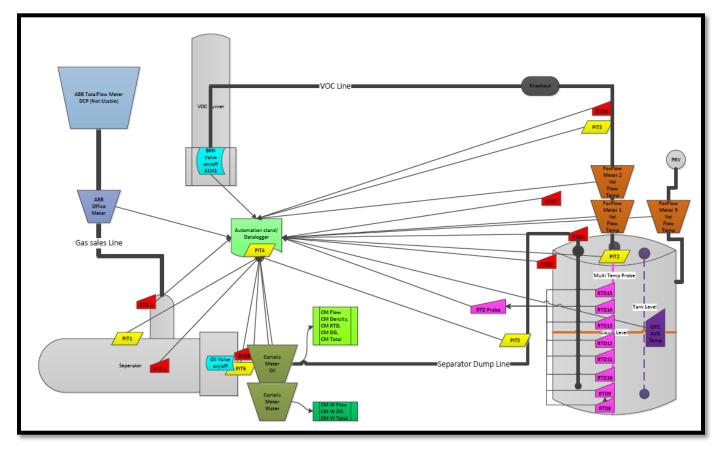


Figure 3-1. Instrumentation map of the test site as of the winter sampling week

Following the winter-phase testing, it was suggested that the addition of several more instrumentations would improve the understanding of both the separator and the tank. Thus, additional pressure transducer and thermocouple were added downstream of the Coriolis meters (PIT7 and RTD 16, respectively). Also, since the reading of PIT5 may have been underestimated (due to the fact that its range was well below the actual pressure measured), it was decided to add a new 0-100 psig pressure transmitter (PIT8). Additionally, a sun radiation meter was added to correlate breathing loss with the sun's radiation. Finally, and perhaps most importantly, the vane anemometer has been added to the tank-to-burner pipe to set as another flowrate verification for the flash gas.

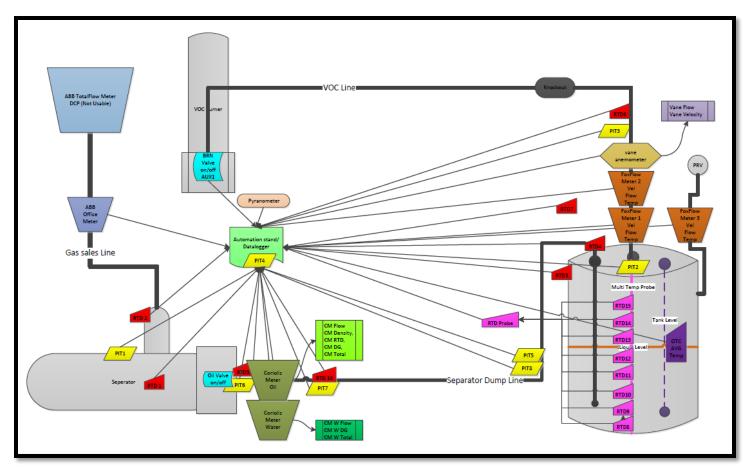


Figure 3-2. Instrumentation map of the test site as of the summer sampling week

At the conclusion of the summer phase testing it was discovered that a hole exists in the so-called 'down-comer' (last segment of the separator-to-tank pipe) whose target is to avoid of a case of a separator overflow during upset conditions (since a negative pressure is applied and consequently oil flows from the tank back to the separator). In order to estimate the two-phase flow outside of the small orifice, the closet pressure reading was at the top of the pipe prior to entering the tank. Therefore, RTD4 was placed by PIT9 and a series of post-summer experiments were conducted in mid-August to help determining the oil fraction leaving through the small orifice.

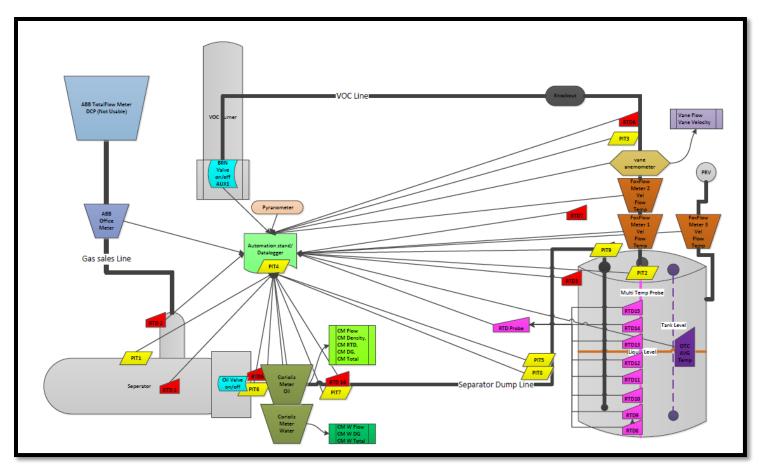


Figure 3-3. Instrumentation map of the test site as of the post-summer sampling week

The following tables summarize the instrumentation by process unit and shows all meters includes the measured parameter, engineering units, range and accuracy.

	Data					Data
Parameter	logger	Location	Instrument	Range	Accuracy	Collection
	ID					Frequency
Separator	PIT 1	Separator	Pressure	0–500	± 2% of	1 second
Pressure		headspace	transducer	psig	measured	
					value	
Separator Dump	PIT 6	Upstream of	Pressure	0–500	± 2% of	1 second
Pressure		Coriolis	transducer	psig	measured	
		meter			value	
Separator-to-oil	PIT 7	Downstream	Pressure	0–100	± 0.25% of	1 second
tank pipe gas /		of dump	transmitter	psig	measured	
liquids pressure		valve			value at	
Post dump valve					FSO at 75°F	

 Table 3-1: Pressure Transducer on the High-Pressure Separator

Table 3-2: RTDs on the High-Pressure Separator

	Data					Data
Parameter	logger	Location	Instrument	Range	Accuracy	Collection
	ID					Frequency
Separator Oil	RTD 1	Separator oil	RTD	0–200ºF	± 2ºF	1 second
Temperature		layer				
Separator Gas	RTD2	Separator	RTD	0–200ºF	± 2ºF	1 second
Temperature		gas				
		headspace				
Separator Dump	RTD5	Upstream of	RTD	0–200ºF	± 2ºF	1 second
Temperature		Coriolis				
		meter				
Separator Dump	RTD16	Downstream	RTD	0–200ºF	± 2ºF	1 second
leg		of dump				
		valve				

Table 3-3: Flow Rate Measurement (including Coriolis meter) on the High-Pressure Separator

Parameter	Data logger ID	Location	Instrument	Range	Accuracy	Data Collection Frequency
Separator	ABB Flow	Separator	XFC G4	0–250	0.05%	1 second
produced gas		gas leg	6413Y	MSCFD		
flowrate				DP ^a		
				0–500		
				MSCFD		
				SP ^b		
Separator oil	CM Flow	Upstream	Coriolis	0–6576	± 0.5% of	1 second
flowrate to tank		of oil dump	meter	Std.	rate	
[R100-series]		valve		bbl/d		
Separator oil to	СМ	Upstream	Coriolis	0–3.0	± 10	1 second
tank density	Density	of oil dump	meter	SGU	kg/m ³	
		valve				
Separator oil to	CM RTD	Upstream	Coriolis	(-)40—	± 1 ºC	1 second
tank		of oil dump	meter	140 ºF	± 0.5% of	
temperature		valve			reading	
Coriolis meter	CM DG	Upstream	Coriolis	0-	N/A ^c	1 second
drive gain		of oil dump	meter	100%		
		valve				
Separator water	CM W	Upstream	Coriolis	0–6576	± 0.28%	1 second
flowrate to tank	Flow	of water	meter	Std.	of rate	
[F100-series]		dump valve		bbl/d		
Coriolis meter	CM DG	Upstream	Coriolis	0-	N/A ^c	1 second
Water drive gain		of water	meter	100%		
		dump valve				

^a Differential pressure (pressure difference through the orifice plate.

^b Static pressure (total pressure in the line).

^c The drive gain is not typically used as a process measurement parameter, more of a diagnostic

to determine what is going on in the process.

	Data					Data
Parameter	logger	Location	Instrument	Range	Accuracy	Collection
	ID					Frequency
Separator-to-	PIT 5	Where the	Pressure	0–1.5	± 2% of	1 second
oil tank pipe		sep-to-oil	transducer	psig	measured	
gas/liquids		tank pipeline			value	
pressure Lo		comes to the				
		surface, base				
		of upcomer				
Separator-to-	PIT 8	Where the	Pressure	0–100	± 0.25% of	1 second
oil tank pipe		sep-to-oil	transmitter	psig	measured	
gas/liquids		tank pipeline			value at	
pressure Hi		comes to the			FSO at	
		surface, base			75°F	
		of upcomer				
Top of riser	PIT 9 ^d	Just prior to	Pressure	0–100	± 2% of	1 second
pressure		entering the	transducer	psig	measured	
		tank on the			value	
		horizontal				
		section				
Oil tank	PIT 2	Bulk tank	Pressure	0–1.5	± 2% of	1 second
headspace		headspace	transducer	psig	measured	
gas pressure		pressure			value	
		(gauge)				
Oil tank	RTD3	In tank, at	Thermocouple	(-)25–	± 2 ºF	1 second
headspace		top of tank,		175 ºF		
gas		centerline				
temperature						
Separator-to-	RTD 4 ^c	Just prior to	Thermocouple	0–250	± 2 ºF	1 second
oil tank pipe		entering the		₽F		
gas/liquids		tank on the				
temperature		horizontal				
		section				

 Table 3-4: Instruments on the Separator-to-Tank Pipe Segment and Tank Headspace

^d On 08/10/2016, PIT 9 was replaced by RTD 4 to obtain more information regarding the dump pressure near the tank.

Table 3-5: RTDs on the Tank

Parameter	Data logger ID	Location	Instrument	Range	Accuracy	Data Collection Frequency
Oil tank gas/liquids temperature	RTD 8	In tank, cernterline, 14" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second
Oil tank gas/liquids temperature	RTD 9	In tank, cernterline, 32" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second
Oil tank gas/liquids temperature	RTD 10	In tank, cernterline, 52" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second
Oil tank gas/liquids temperature	RTD 11	In tank, cernterline, 72" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second
Oil tank gas/liquids temperature	RTD 12	In tank, cernterline, 92" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second
Oil tank gas/liquids temperature	RTD 13	In tank, cernterline, 112" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second
Oil tank gas/liquids temperature	RTD 14	In tank, cernterline, 135" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second
Oil tank gas/liquids temperature	RTD 15	In tank, cernterline, 152" above tank bottom	RTD	(-)40– 185 ºF	± 1.5 ºF	1 second

	Data					Data
Parameter	logger	Location	Instrument	Range	Accuracy	Collection
	ID					Frequency
Oil tank VOC burner	RTD 6	In tank VOC	RTD	(-)30–	± 2 ºF	1 second
line gas temperature		burner line		150 ºF		
		downcomer				
		upstream of				
		flowmeters				
Oil tank VOC burner	PIT 3	In tank VOC	Pressure	0–1.5	± 2% of	1 second
line gas pressure		burner line	transducer	psig	measure	
		downcomer			d value	
		upstream of				
		flowmeters				

 Table 3-6: Temperature and Pressure Monitors on the Tank-to-Burner Pipe Segment

	Data					Data
Parameter	logger	Location	Instrument	Range	Accuracy	Collection
	ID					Frequency
Oil tank VOC	Fox1	In tank VOC	Thermal	0–500	1%	1 second
burner line gas	Flow	burner line	flowmeter	MSCFD	Reading	
flowrate		downcomer		Two ^e	+ 0.2 %	
		upsteam of		curves	Full Scale	
		knockout pot				
Oil tank VOC	Fox2	In tank VOC	Thermal	0–500	1%	1 second
burner line gas	Flow	burner line	flowmeter	MSCFD	Reading	
flowrate		downcomer		Three ^f	+ 0.2 %	
		upsteam of		curves	Full Scale	
		knockout pot				
Oil tank PRV vent	Fox3	In tank PRV	Thermal	0–500	1%	1 second
gas flowrate	Flow	vent line	flowmeter	MSCFD	Reading	
		upstream of		Two ^d	+ 0.2 %	
		the PRV		curves	Full Scale	
Oil tank VOC	Vane	In tank VOC	Vane	0-	< 1.5%	1 second
burner line gas	anemo-	burner line	anemo-	253.2		
flowrate	meter	downcomer	meter	actual		
		upsteam of		m³/hr		
		knockout				

Table 3-7: Flow Rate Measurement on the Tank-to-Burner Pipe Segment

^e Calibration was performed using gas compositions at two temperatures (40°F and 90°F)

^f Calibration was performed using gas compositions at three temperatures (40°F, 65°F and 90°F)

Parameter	Data logger ID	Location	Instrument	Range	Accuracy	Data Collection Frequency
Solar Radiation	Solar_Rad	7 m south	SR05	0–1600		1 second
meter		of storage	pyranometer	W/m²		
		tanks				
Oil tank liquid	LL1	Oil tank	Tank level	0–180	± 0.125	1 second
level		liquid	sensor	inch	inch	
		surface				
Ambient	PIT 4	In tank VOC	Pressure	0–1.5	± 2% of	1 second
pressure		burner line	transducer	psig	measure	
		downcomer			d value	
		upstream of				
		flowmeters				
Oil dump valve	O_ Dump	Oil dump	Valve	0–3 ^g	N/A	1 second
on/off position	_Po	valve	position			
& dump time/			indicator			
duration						
VOC valve	BRN_	Valve	Valve	0 or 1	N/A	1 second
on/off position	valve	position	position			
& dump time/		sensor on	indicator			
duration		the VOC				
		valve				

Table 3-8: Miscellaneous Instruments

^g Units depends on valve position (0 = off, 1 = dumping, 2 = in cycle, 3 = in cycle & dumping)

3.2 <u>Coriolis Meter</u>

3.2.1 Description and principle of operation

Coriolis mass flowmeters measure the force resulting from the acceleration caused by mass moving toward (or away from) a center of rotation. The meter utilizes a vibrating tube in which Coriolis acceleration of a fluid in a flow loop can be created and measured. The measuring tubes are forced to oscillate such that a sine wave is produced. At zero flow, the two tubes vibrate in phase with each other. When flow is introduced, the Coriolis forces cause the tubes to twist, which results in a phase shift. The time difference between the waves is measured and is directly proportional to the mass flow rate [3].

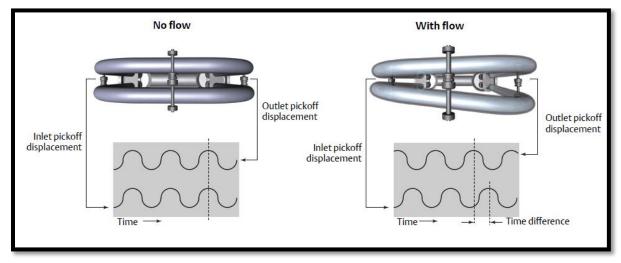


Figure 3-4. Comparison of zero flow and full flow in Coriolis tubes [3]

3.2.2 Output specifications

There are two models of Coriolis meters used in the test site: (1) R100 (oil leg) and (2) F100 (water leg). Both Coriolis meters have the same output specifications listed in Table 3-9:

Specification	
Analog input flow	17.3 VDC
Analog output flow	1–5 VDC
Calibration code	Z
Temperature range	(-)40–140°F
Accuracy class	±0.5% of rate

Table 4-5: Output Specifications of Coriolis Meter

In order to translate the measurement data (e.g. tubes vibration frequency, mass flow rate of the fluid traveling through the tubes etc.) into meaningful insight, a transmitter wired to the

Coriolis meter is needed. The in-situ transmitter used is Micro Motion Model 5700 with the input/output characteristics shown in Table 3-10 below:

Specification	
Internal voltage	24 VDC (nom)
External voltage	30 VDC (max)
Scalable range	4–20 mA
Downscale fault	Configurable from 1.0 – 3.6 mA,
	default value = 2.0 mA
Upscale fault	Configurable from 21.0 – 23.0 mA,
	default value = 22.0 mA
Linearity	0.015% Span, Span = 16 mA

Table 3-10: Model 5700 Transmitter Specifications

The transmitter provides users with an access to detailed measurement history ("Coriolis logs") up to 30 days from the measurement itself. The logs can be downloaded to a csv file by the user.

3.2.3 Summary of calibration/proving procedures

By default, the Coriolis meter measures the mass flow rate of the desired fluid going through its tubes. However, volume of the fluid will change with varying temperature, due to thermal expansion; and pressure, due to fluid compression. Custody transfer measurement typically requires the meter accuracy to be proved in the field against a known volume reference. Thus, this sub-section differentiates between the *calibration* and the *proving* of the Coriolis meter.

Calibration is typically performed in a laboratory at several different flow rates, densities, or temperatures (using water as a medium) so that the meter's calibration factor is determined based on ISO/IEC 17025 standard. Each certified calibration facility performs liquid mass flow, density, and volume flow calibrations with mass flow uncertainties as low as 0.03% or less.

The Coriolis meters maintain two typical calibration stands: (1) Transfer Standard Method (TSM) and (2) gravimetric flow. Typically, two calibration techniques are used: (1) static start/finish and (2) dynamic start/finish. A short description of each calibration stand is shown below [4].

Static start/finish (SSF)

SSF is a gravimetric calibration method where the calibration batch begins and ends at no flow condition. The reference used in this method is a weigh scale. The test fluid is water which is collected in a tank. The tank is placed on a scale so that the mass of the water is determined. The mass indication of the scale is corrected with the Buoyancy Factor (BF) and an Immersed

Pipe Correction (IPC). BF is influenced by values taken during the use of the scale, Buoyancy Vapor Correction (BVC). Fluid pressure and temperature are measured both upstream and downstream of the unit under test (UUT). Additionally, ambient pressure, temperature and humidity are measured during each test.

Dynamic start/finish (DSF)

DSF is a gravimetric calibration method where the calibration batch begins and ends at steadstate flow. The calibration is performed in closed conduits and it uses water as a test fluid. The water passes through the unit under test (UUT) and the reference meter (RM). The reference meters (also called Master meters) are known good meters initially calibrated on an ISO 17025 accredited Primary gravimetric flow stand and TSM traceability is maintained annually by using Global Reference Meters. The mass total from the UUT is compared to the mass total from the RM via pulse counters. Fluid temperature and pressure is measured upstream and downstream of the UUT.

Proving

In addition to the factory-based calibration, a series of meter proving tests (under normal operating conditions in the field) were conducted to the Coriolis meters at the test site. Flowmeters are proven by comparing the indicated flow measurement (volume or mass) to a reference flow volume or mass. The results of the proving generate a Meter Factor (MF_P), a number near 1.000 that adjusts the flow calibration factor so that the unit under test matches the reference.

The test consisted of connecting a Coriolis master meter (MM) in series with the meter under test (MUT) and comparing the MUT to a known NIST-traceable volume by master meter according to standards set forth in API MPMS Ch. 4.5. The proving was performed with a non-hazardous, non-combustible petroleum distillate to minimize the potential for multi-phase flow during the proving period. The petroleum distillate was a 42°API gravity oil surrogate which was pumped in upstream from the isolated MUT, through both the MUT and the MM, and then returned to the distillate tank (Figure 3-5). The pressure and flow rate were controlled through the pumping trailer and were set to mimic normal operational conditions of the MUT.

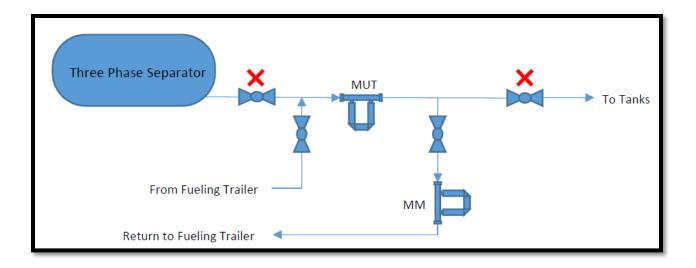


Figure 3-5. In-field testing setup (red arrows indicate closed valves)

3.2.4 Summary of calibration results

Multiple calibration and proving tests were conducted on the two meters used in the test-site, namely:

- Calibration report for F-100 Coriolis meter (water-leg)
- Calibration report for R-100 Coriolis meter (oil-leg)
- Meter proving prior to winter phase sampling week
- Meter proving prior to summer phase sampling week
- Meter proving following summer phase sampling week

As discussed above, the most representative parameter for a meter's accuracy is the meter factor. While this parameter is more common in proving terminology, the calibration lab also reports this factor, though with different definition: the ratio of the "Referenced Total" and the "Meter Total", as reported by the calibration lab. Table 3-11 below illustrates the calibration results for both Coriolis meters used in the test site (for oil and water flow rate measurement).

Test type	Coriolis Model	Date	SG of Medium	Flow % (of max)	Meter Factor
Calibration				5.00	0.999
(water-leg)	F-100	07/29/2014	1.00	25.0	0.999
(water-leg)				50.0	0.999
Calibration	R-100	12/13/2011	1.00	50.0	Not
(oil-leg)					Reported

An in-field, in-situ meter proving test was conducted on 3/4/16, 7/21/16 and 8/4/2016 to determine the meter factor or correction for installation and operational affects as well as random error. Since the meter factor calculation in the proving process is more complex than that of the calibration value determined by the lab, the following section addresses the method used to evaluate that parameter.

Meter Factor Determination by Master Meter Method

The meter-under-test ("MUT" in Figure 3-5) was proved against a master meter ("MM" in Figure 3-5) according to API MPMS Ch.4.5 using a transfer of meter factor approach from the MM to the MUT. The meter factor was determined by comparing collected pulses, which corresponds to Indicated Volume (IV), on both meters simultaneously. The average of 5 of these collected pulses test-runs determines the average IV that both the MUT and MM detected during the test period. The IV on both meters is then corrected for any temperature (correction for the temperature of liquid or CTL) or pressure (correction for the pressure of liquid or CPL) effects to arrive at an Indicated Standard Volume (ISV). Finally, a master meter factor is applied according to the following equation (3-1):

$$MF_P = \frac{ISV_{MM}}{ISV_{MUT}} = \frac{MF_{MM} * IV_{MM} * CTL_{MM} * CPL_{MM}}{IV_{MUT} * CTL_{MUT} * CPL_{MUT}}$$
(3-1)

Where:

 MF_P is the Coriolis meter factor due to proving ISV_{MM} is the indicated standard volume of the master meter ISV_{MUT} is the indicated standard volume of the meter under test MF_{MM} is the meter factor of the master meter IV_{MM} is the indicated volume of the master meter IV_{MUT} is the indicated volume of the meter under test CTL_{MM} is the temperature correction factor of the master meter CTL_{MUT} is the temperature correction factor of the meter under test CPL_{MM} is the pressure correction factor of the master meter CPL_{MUT} is the pressure correction factor of the master meter

A different approach determine the meter factor based on direct meter pulses (to obtain volumetric flow) is reported in API 13.3.B.1.3, as shown in equation (3-2) [6]:

$$MF_{P} = BPV * CTS_{p} * CPS_{p} * \frac{NKF}{Pulses} * \frac{CTL_{p}}{CTL_{m}} * \frac{CPL_{p}}{CPL_{m}}$$
(3-2)

Where:

BPV is the base prover volume

 $CTS_p \text{ is the correction factor for the effect of temperature on steel on a liquid in a prover \\ CPS_p \text{ is the correction factor for the effect of pressure on steel on a liquid in a prover \\ NKF is the nominal K-factor$

 $\ensuremath{\mathsf{CTL}}\xspace_p$ is the correction factor for the effect of temperature on a liquid in a prover

 CTL_m is the correction factor for the effect of temperature on a liquid passing through a meter (during a proof)

 $\ensuremath{\mathsf{CPL}}\xspace_p$ is the correction factor for the effect of pressure on a liquid in a prover

CPL_m is the correction factor for the effect of pressure on a liquid passing through a meter (during a proof)

Measurement Uncertainty of Secondary Test Measure (Master Meter)

The master meter method described in API MPMS Ch.4.5 is a secondary test measure method as contrasted to measurement against a fixed volume displacement prover as described in API MPMS Ch.4.2. As such, the master meter method has an additional random measurement uncertainty above the random uncertainty contained within a primary test measure (prover).

The master meter used in this test was proved at multiple flow rates against a Small Volume Piston Prover (SVP) to determine a curve of meter factor versus flow rate (Figure 3-6). Once the proving flow rate was determined, a MM meter factor was interpolated from Figure 3-6 to determine the applicable MM meter factor to be applied in equation (3-1).

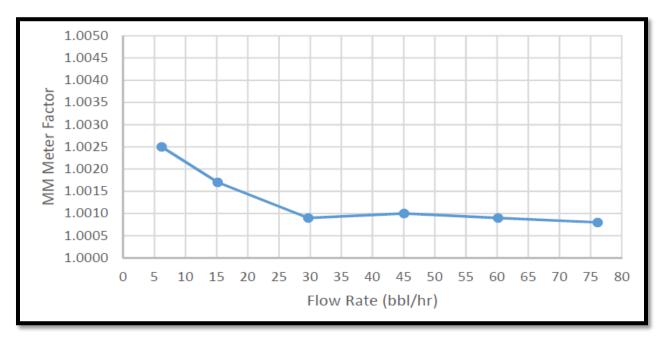


Figure 3-6. Master meter MF versus flow rate

Each MM meter factor carries a random uncertainty according to API MPMS Ch.4.5 of 0.027% (MF_P ± 0.00027) or better using the repeatability criteria of proving against a SVP of 5 test runs that repeat within a tolerance range of 0.05%. A simple linear interpolation was used to quantify the MM meter factor between flow rates. The maximum allowable meter factor shift between two adjacent proving flow rates for the master meter is set at 10/10000th or density meter factor (DMF) $|DMF| \le 0.001$. While this linear interpolation will increase the potential uncertainty of the MM meter factor, the potential for uncertainty has been limited to ±0.077% as a worst case and can generally be expected to be much less than this value, especially given the proximity of the MUT proving flow rate to one of the MM proving flow rates.

Additional sources of measurement uncertainty are encapsulated within the uncertainty of the meter factor itself where they are used in the determination of the meter factor. These uncertainties are the uncertainty of temperature and pressure. Being a secondary test measure, the MM meter factor also carries the uncertainty of the base prover volume or BPV of the SVP with which the MM was proved. This allowable uncertainty is standardized in API MPMS Ch.4.9 and set at 0.027%. The uncertainty of the SVP used in proving the master meter is roughly an order of magnitude better than the standard and is listed in the water draw calibration of the SVP.

Results of the Master Meter Proving

A before and after proving of the MUT was performed and the stability of the MUT during the well testing period was assessed. The MUT meter factor before and after along with associated proving uncertainties is listed in Table 3-12 below.

Date	Proving Flow	MUT Meter	Meter Factor
Performed	Rate (bbl/hr)	Factor	Uncertainty %
3/4/2016	10	1.0008	0.022
7/21/2016	8	0.9979	0.018
8/4/2016	8	0.9995	0.022
8/4/2016	25	1.0001	0.009
8/4/2016	47	1.0003	0.022

Table 3-12: Coriolis's Meter Factor Summary

The proving results show that the MUT is functioning with relatively little installation and operational errors. For comparison, a meter factor of exactly 1.0000 according to equation (3-1) above indicates an exact agreement with the NIST standards of measure. The Bureau of Land Management (BLM) standard criteria for custody transfer is a meter factor that is within the range of 0.9900 and 1.0100, has an uncertainty of 0.027% or better, and shows no more than ± 0.0025 deviation between two proving tests. While API has no set standards for these criteria,

these values have been widely accepted by the industry to be acceptable custody transfer criteria.

By these criteria, the MUT meter factors show good agreement from before and after the well testing period at the flow rate of interest (8 bbl/hr). Additionally, the MUT meter factors indicate good zero stability of the meter when viewed over a wide range of flow rates. Coriolis meters in general have a low flow turndown limit where accuracy of measurement tends to suffer. For this particular make and model of Coriolis meter, the stated low flow turndown is set at ~12.6 bbl/hr. Given the range of flow rates tested, minimal drift of accuracy is seen even below this manufacturer-stated limit.

Adjustment for high drive gain

The Coriolis's drive gain (abbreviated DG) is a measure of the power usage required to maintain the tube vibration at the specified frequency, and is expressed in a percentage of available power. A typical value for the DG is below 15% (e.g. no more than 15% of the power is required to maintain the tube at the specified frequency). The DG serves as an indicator to spot whether an entrained gas is present in the production flow, therefore any DG values higher than 15% have to be adjusted accordingly.

In order to correct the volume flow for bubbles (i.e. two-phase flow in the oil), the Gas Void Fraction (GVF) for all densities needs to be calculated based on equation (3-3a):

$$GVF = \frac{\rho_{mix} - \rho_{liquid}}{\rho_{gas} - \rho_{liquid}}$$
(3-3a)

Where:

GVF is the gas void fraction (unitless) ρ_{mix} is the density of the two-phase flow (kg/m³) ρ_{liquid} is the density of the "bubble-free", standard density (kg/m³) ρ_{gas} is the density of the gas (kg/m³)

Since $\rho_{\text{liquid}} >> \rho_{\text{gas}}$, equation (3-3a) can be rearranged to equation (3-3b):

$$GVF = \frac{\rho_{liquid} - \rho_{mix}}{\rho_{liquid}}$$
(3-3b)

The GVF calculated in equation (3-3b) indicates whether the standard volume measurement is too high (if GVF > 0) or too low (if GVF < 0), so that the new meter factor adjusted for DG is:

$$MF_{DG} = 1 - GVF \tag{3-4}$$

Where:

 MF_{DG} is the adjusted meter factor for high drive gain readings.

Volumetric adjustment to standard conditions

The Coriolis readings (e.g. flow rate or total flow) are depicted in line conditions, without any correction applied from the manufacturer (i.e. $MF_P = 1$ when the meter leaves the factor). Given that the test site is located near Greeley (CO), the ambient pressure is approximately 12.3 psia. Since the density (and therefore volume) of hydrocarbons is sensitive to temperate and pressure, a volume correction factor (VCF) is used to correct observed volumes to equivalent volumes at standard temperature and pressure (60°F and 14.7 psia), which serve as a way to use volumetric measures equitably in general commerce.

The most common and widely recognized standard that establish such a correction to crude oils and other relevant oil products (e.g. liquid refined products, lubricating oils etc.) is API 11.1 [5] ("Manual of Petroleum Measurement Standards – Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils"), which is applicable for crude oils with density ranging from 610.6 kg/m³ to 1163.5 kg/m³.

As stated above, the correction factor should consist of a temperature and pressure portions to correct hydrocarbon liquids to standard conditions. The temperature portion of this correction is referred as the "Correction for the effect of Temperature on Liquid" (CTL) and the pressure portion is referred as the Correction for the effect of Pressure on Liquid (CPL), both of which are defined in API 11.1. However, this correction is relatively small for liquids compared to gases (< 1%).

The actual Coriolis flow is adjusted to standard conditions based on the following conversion illustrated in equation (3-5):

$$V_{60} = V_{t,P} * MF_P * C_{TL} * C_{PL} * MF_{DG}$$
(3-5)

Where:

 V_{60} is the volume at standard conditions (60°F and 14.7 psia) $V_{t,P}$ is the volume measured at alternate conditions MF_P is the Coriolis meter factor due to proving C_{TL} is the correction for the effect of temperature on liquid C_{PL} is the correction for the effect of pressure on liquid

3.2.5 List of related files / documentation

- Calibration record of F-100 meter by Micro Motion, Inc.
- Calibration record of R-100 meter by Micro Motion, Inc.
- Micro Motion Calibration Procedure (Emerson Process Management).

- Calibration and Measurement Capability of Transfer Standard Method Flow Meter Calibration Stands (Emerson Process Management).
- Proving records (including master meter) for winter phase testing by Volumetrics.
- Proving records (including master meter) for summer phase testing (pre and post) by Volumetrics.
- Proving records for master meter (HANK)
- Gravimetric waterdraw certificate.

3.3 Thermal Mass Flow Rate (Fox Thermal FT3 Model)

3.3.1 Description and principle of operation

Thermal mass meters measure gas flow based upon the concept of convective heat transfer (since gases absorb heat). Figure 3-7 is a schematic of the Fox meter. A heated resistance temperature detector (RTD) placed in an air or gas stream transfers heat to the gas in proportion to the mass flow rate of the gas. A second RTD acts as a reference sensor and determines the gas temperature.

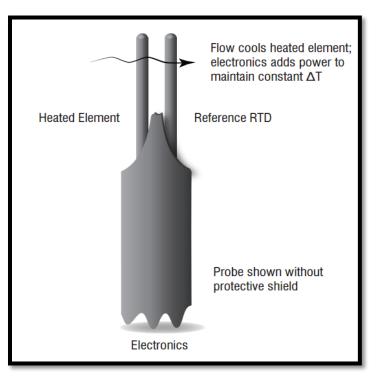


Figure 3-7. Concept of thermal mass flow meters [7]

The electrical power required to maintain a constant temperature differential between the two detectors is proportional to the gas mass flow rate [7], as shown in equation (3-6a).

$$W = I^2 R_1 \tag{3-6a}$$

Where:

W is the electrical power supplied to the heated RTD element (Watts) I is the current supplied to the heated RTD element (ampere)

R1 is the electrical resistance of the heated RTD element (ohms)

This electrical power is measured and converted to a gas flow rate using the relationship developed by Thomas (1911) [8], as shown in equation (3-6b):

$$M = \frac{W}{c_p \Delta T} \tag{3-6b}$$

Where:

M is the mass flow rate in g/s C_p is the heat capacity of the gas at constant pressure J/g^{*0}C ΔT is the temperature difference between the heated and reference RTD elements in ⁰C

3.3.2 Output specifications

Once the flow rate has been determined based on the electrical power required to maintain a constant temperature differential between the sensors, the microprocessor (which controls the sensor and determines the resulting electrical characteristics) linearize the signal to deliver a linear 4 to 20mA signal. The following is provided from the manufacturer:

- Two isolated 4 to 20mA outputs (output one is for flow rate and output two is programmable for flow rate or temperature).
- For input voltage, 24 VDC is recommended, however ±10% of the base value is satisfactory.

3.2.3 Summary of calibration procedures

The thermal mass meters used in the test site were model FT3 manufactured by Fox Thermal Instruments, Inc. For the FT3 meters, a factory calibration and an in-pipe calibration validation, also abbreviated CAL-V, are conducted:

- Factory calibration occurs in the calibration laboratory and uses calibration standards traceable to NIST.
- CAL-V calibration allows the operator to validate the meter's calibration accuracy under actual flow conditions by testing the functionality of the sensor and associated signal processing circuitry.

For the factory calibration procedure, the process begins with a detailed customer application data review and sign-off by lab personnel. The following steps are then completed [9]:

- a. Select lab, lab piping and accessories to replicate actual installation.
- b. Install the flowmeter (Device Under Test or DUT), pressurize and leak test the calibration system.
- c. Charge calibration tunnel with calibration gas or gas mixture (the customer provides two gas compositions with similar components to simulate the 'process' gas because the gas heat transfer properties (primarily thermal conductivity, density, and viscosity) impact the heat transfer and the sensor response).
- d. Perform preliminary test of calibration standard and data acquisition system.

- e. Perform zero stability tests and take zero calibration point.
- f. Collect approximately 12 calibration flow range data points and an over range point.
- g. Download collected calibration data to DUT.
- h. Perform final calibration verification over the entire flow range to ensure calibration parameters have been properly downloaded and that the DUT is performing within the published accuracy specification.
- i. Download all flow meter calibration data and settings to master and back-up calibration databases.
- j. Prepare calibration QC documents to record all raw data, parameters and settings and store in master and back-up calibration databases.
- k. Prepare customer calibration certificate to include raw sensor voltages, flow velocities and flow rates in customer-specified units, standard asset number, reference standard data, gas/gas mixture, and calibration technician signature.

For the testing at the Bernhardt site, three gas compositions^A were used to factory calibrate the Fox FT3 meters. These compositions were based on process simulation modelling of equilibrium tank headspace gas compositions for three temperatures: 40°F (gas curve 1, Winter operation simulation), 65°F (gas curve 3, Spring/Fall operation simulation) and 90°F (gas curve 2, Summer operation simulation). These compositions are shown in Table 3-13:

Component	Gas Curve 1	Gas Curve 2	Gas Curve 3 ^A
Methane	32.43	20.89	26.26
Ethane	25.81	18.16	22.05
Propane	18.17	16.53	18.19
Butanes	12.40	17.99	15.96
Pentanes	6.51	15.50	10.64
Hexanes	N/A	N/A	1.45
Carbon dioxide	1.98	1.32	1.63

 Table 3-13. Flash Gas Compositions (in mol%) For Fox FT3 Factory Calibrations

^AGas curve 3 was used in FT3 S/N 21776 to see whether the calibration output was linear.

The calibration for each meter consists of 20 data points with output signal varying from 4 mA (= 0 MSCFD) to 20 mA (= 500 MSCFD). Using proprietary software designed by Fox Thermal Instruments, a trained calibration technician using automatic data collection equipment collects flow data through the customers flow range. In a Fox Thermal Flowmeter the sensor, the DC voltage signal is referred to as Current Sense Voltage (abbreviated CSV). Velocity at standard

conditions is referred to as velocity. Under normal¹ operation, the flowmeters microprocessor reads CSV and calculates the mass velocity from the calibration table stored in the meter's memory. Mass flow rate is calculated by multiplying the mass velocity times the cross sectional area of the customers pipe² [13].

The second calibration procedure performed in-situ under actual pipe conditions is the CAL-V calibration. During CAL-V mode (Figure 3-8a), the microprocessor controls the sensor and determines the resulting electrical characteristics, whereas during factory mode (Figure 3-8b) the signal processing electronics control the sensor.

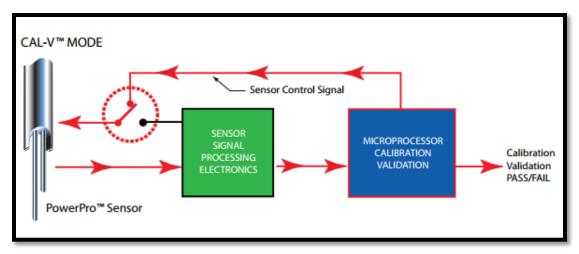


Figure 3-8a. Circuitry of CAL-V measurement mode of FT3 model [10]

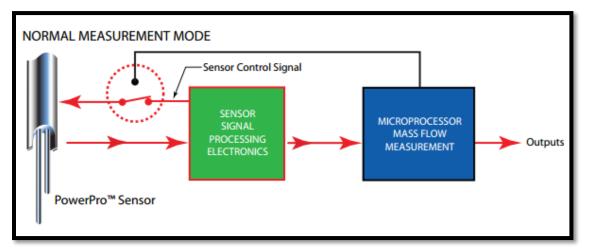


Figure 3-8b. Circuitry of normal measurement mode of FT3 model [10]

The in-situ calibration results are compared with the factory-based calibration. The CAL-V test provides three output parameters shown on the calibration validation certification:

¹ Normal refers to a reference condition at 0°C and 760 mmHg.

² The factory based calibration was conducted on a 3-inch pipe diameter (ID = 3.068 inch).

- 1. **CAL-V Result:** A "Pass" or "Fail" result shown on the screen. If the CAL-V diagnostic finds the sensor too far out of range compared to the factory calibration baseline, that's a "Fail" result. If the diagnostic finds the meter within tolerances, it's a "Pass".
- 2. **CAL-V Value:** This is the baseline value from the most recent factory calibration of the meter. It is a measure of the ratio in resistance (in ohms) between the meter's two sensors at the CAL-V diagnostic's test voltage.
- 3. **CAL-V Verify**: This is the percentage difference between the factory baseline resistance ratio and the in-the-moment resistance ratio. If this value is too large, i.e. an absolute value greater than 2.5%, the CAL-V Result will be "Fail." If the absolute value of the Verify value is 2.5% or less, it's a "Pass."
- 3.2.4 Summary of calibration results

Unlike the proving process for the Coriolis meter, there is no independent check for the FT3 meters.

Table 3-14 below summarizes the available documentation of the calibration certificates (from the factory) as well as the calibration validation certifications performed at the test site. Note that for the two tested seasons, all CAL-V tests were performed by the same method and by the same technician.

Calibration Type	Season	S/N of	Date of Test	CAL-V	CAL-V	CAL-V
		FT3		Result	Value	Verify
Factory Calibration		21773	02/23/2016	N/A	N/A	N/A
CAL-V		21775	02/25/2016	PASS	21.8	4.05%
Factory Calibration	\\/;intor	21775	02/22/2016	N/A	N/A	N/A
CAL-V	Winter (PRV)	02/25/2016	PASS	22.81	0.01%	
Factory Calibration	21776		02/22/2016	N/A	N/A	N/A
CAL-V		21776	02/25/2016	PASS	22.84	3.15%
Factory Calibration		21773	06/13/2016	N/A	N/A	N/A
CAL-V		21//3	07/20/2016	PASS	22.17	2.68%
Factory Calibration	Curra na a n	21775	06/10/2016	N/A	N/A	N/A
CAL-V	Summer (PRV)		07/19/2016	PASS	22.81	0.32%
Factory Calibration		21776	06/10/2016	N/A	N/A	N/A
CAL-V		21776	07/20/2016	PASS	22.84	3.91%

Table 3-14: Summary of FT3's Calibration and CAL-V Records

The above table indicates that the three Fox flow meters were accurate and within the manufacturer's specifications. The CAL-V values are typical and represent the ratio of the typical resistance of the 200-220 ohms RTD element with that of the maximum resistance that corresponds to the maximum temperature/current at which it can operate before it shuts down (factory set) and is typically in 9-10 ohms.

Following the summer phase testing, a series of post-test, "as-found" factory calibrations were performed on each meter using the gas compositions listed in Table 3-14. These "as found" meter calibrations were conducted to check for meter response drift (i.e. from the pre-test voltage vs. flow rate calibration curve). For the same voltage, the calibrated flow rate was compared to that of the 'post-test' flow rate, and the difference between the two flow rates (per voltage) was compared against the manufacturer specification reading.

Due to the fact that the meters were calibrated against a *modeled* flash gas composition, it was expected that during high flow rates the percent difference between the pre- and post-test calibration results would be smaller than during low flow rates since smaller flow rates are harder to measure. To evaluate the sensor response drift between the pre-test and post-test calibrations, voltage versus flow rate was compared, as shown in Figure 3-9.

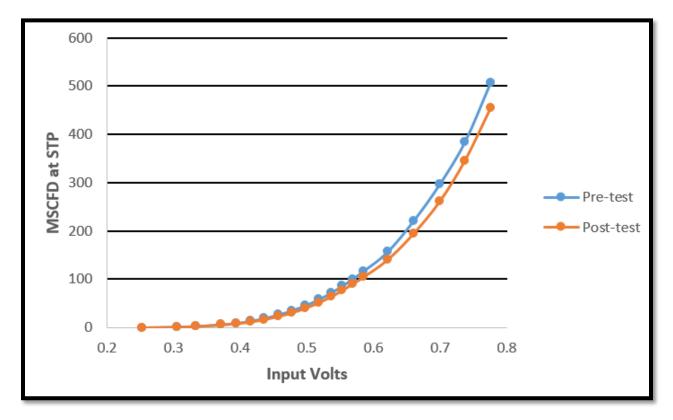


Figure 3-9. Pre-test and post-test calibration for FT3 S/N 21776 (gas curve 2)

As shown in Figure 3-9, during high flow rates the absolute sensor drift (pre-test calibration versus post-test calibration) is much larger than during low flow rates. Nevertheless, the relative difference between the pre-test and post-test readings is on average 10% (pre-test flow rates are higher) almost consistently through all flow rates larger than 9 MSCFD.

An additional source of uncertainty in the FT3 output is the FT3 location on the vertical pipe (i.e. tank-to-burner pipe, also called as "riser"). The 21773 meter was installed 60 inches below a 90-degree elbow, and 30 inches above the 21776 meter on the vertical pipe segment from the tank to the knockout pot. Figure 3-10 below illustrates the pre-test and post-test calibration for the upper FT3 meter.

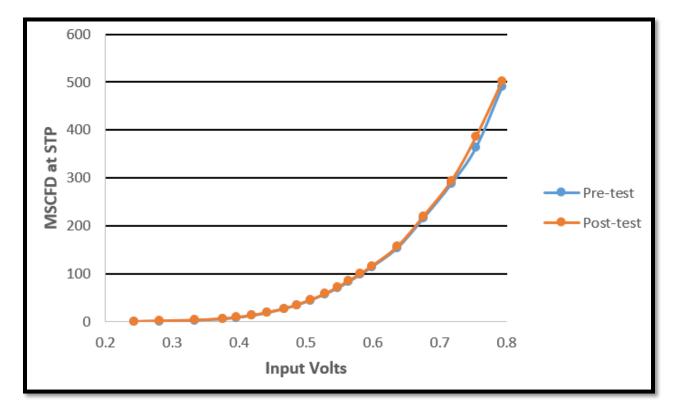


Figure 3-10. Pre-test and post-test calibration for FT3 S/N 21773 (gas curve 2)

As shown in Figure 3-10, and unlike the trend from Figure 3-9, it can be seen that for the upper meter closer to the 90-degree elbow, a negative drift exists (i.e. per specified voltage, the post-test flow rate is higher than the pre-test flow rate). This contrasts the bottom meter with a positive drift.

This trend was confirmed during the testing period, as the upper meter closer to the 90-degree elbow consistently depicted smaller integrated volumes by 5-10% than the lower meter (further away from the disturbance).

Given that the flash gas composition constantly changes due to various reasons (e.g. ambient temperature, liquid level in the tank and more), the flow rate and the integrated flow measurements become less accurate, and a correction factor needs to be applied to account for this compositional change.

The comparison of the pre-test and post-test calibration tests for the remaining gas curves are shown in Figures 3-11 through 3-15.

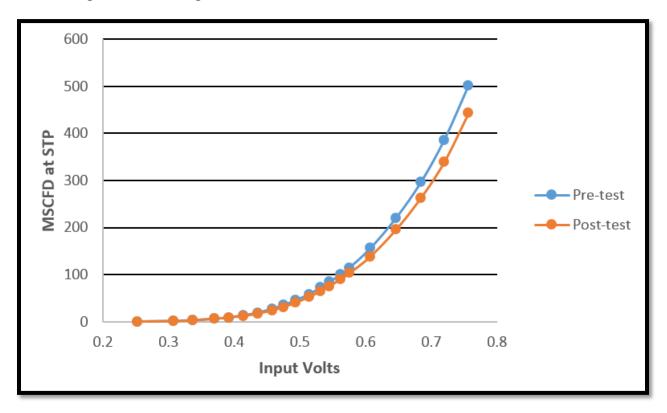


Figure 3-11. Pre-test and post-test calibration for FT3 S/N 21776 (gas curve 1)

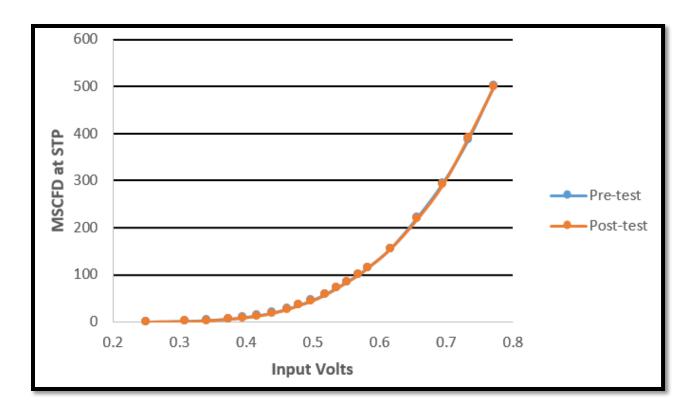


Figure 3-12. Pre-test and post-test calibration for FT3 S/N 21776 (gas curve 3)

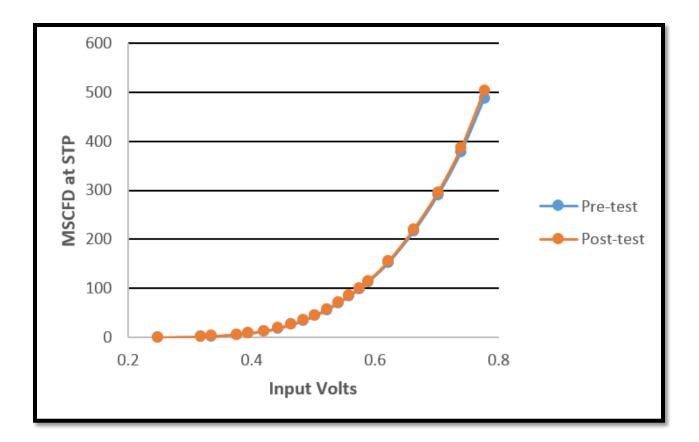


Figure 3-13. Pre-test and post-test calibration for FT3 S/N 21773 (gas curve 1)

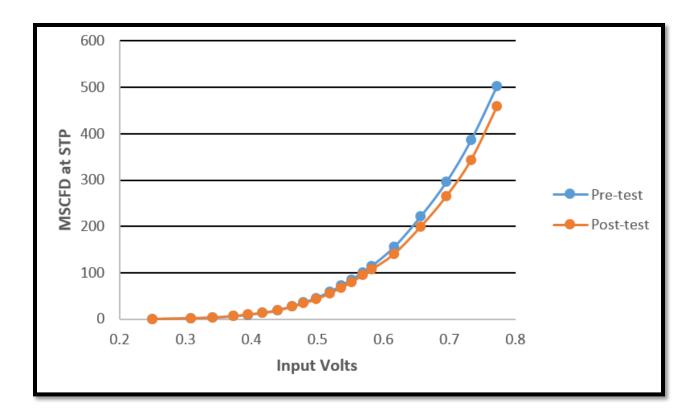


Figure 3-14. Pre-test and post-test calibration for FT3 S/N 21775 (gas curve 1)

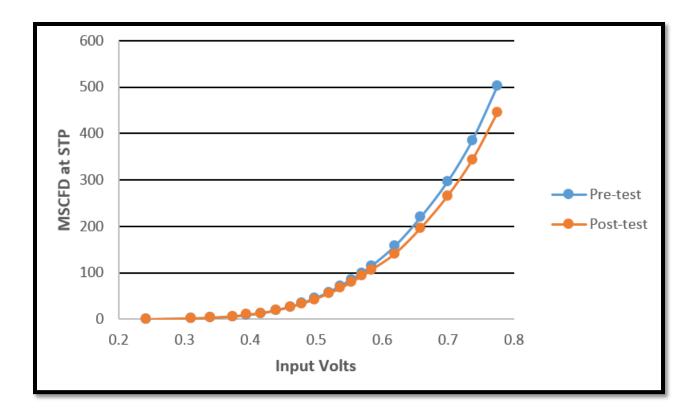


Figure 3-15. Pre-test and post-test calibration for FT3 S/N 21775 (gas curve 2)

Review of measurement uncertainty

The discussion above indicates that two major sources of uncertainty exist: (1) uncertainty of the actual FT3 measurement and (2) uncertainty of the calibration procedure itself. While the flow uncertainty (i.e. uncertainty of the actual FT3) is \pm 1.0% of reading and \pm 0.2% of full scale (with NIST standards in accordance with Mil-Std-45662A), the measurement uncertainty in actual conditions in the field may be larger because of compositional change (see below). To factory calibrate the FT3 meter, a source of known flow is needed as a reference. Consequently, Fox uses two types of calibration systems: (1) Positive Displacement Flowmeter-based standards and (2) Thermal Sensor-based transfer standard. For the purposes of this study, the thermal sensor-based calibration was applied.

In this calibration method, a thermal flow sensor is interfaced to the automated data acquisition system via a precision digital voltmeter calibrated to less than or equal to \pm 0.0035 % uncertainty. These transfer standards measure directly in mass units without the need of pressure or temperature compensation. Thermal sensor-based calibration tunnels have a total system uncertainty of \pm 0.50%.

Uncertainty due to compositional change

As discussed above, for this study, the calibration gas has a different composition than the measured gas due to dynamic field conditions (e.g. storage tank level, ambient temperature etc.). A compositional adjustment to the Fox thermal mass meters has been made by calculating heat transfer properties (e.g. Prandtl number etc.) using King's equation (3-7):

$$v_{act} = v_{cal} * \frac{\mu_{act} * \rho_{cal}}{\mu_{cal} * \rho_{act}} * \left(\frac{k_{cal} * Pr_{cal}^{1/3}}{k_{act} * Pr_{act}^{1/3}}\right)^{1/n}$$
(3-7)

Where:

 v_{act} is the gas velocity of the actual gas composition (m/s) v_{cal} is the gas velocity of the calibrated gas composition (m/s) μ_{act} is the gas dynamic viscosity of the actual gas composition (Pa*s) μ_{cal} is the gas dynamic viscosity of the calibrated gas composition (Pa*s) k_{act} is the gas thermal conductivity of the actual gas composition (W/m/K) k_{cal} is the gas thermal conductivity of the calibrated gas composition (W/m/K) Pr_{act} is the gas Prandtl number of the actual gas composition (unitless) Pr_{cal} is the gas Prandtl number of the calibrated gas composition (unitless) Pr_{cal} is the gas Prandtl number of the calibrated gas composition (unitless) Pr_{cal} is the gas Prandtl number of the calibrated gas composition (unitless)

Equation (3-7) was used to estimate the corrected velocity adjusted for composition by considering all flow rate regimes as shown in the polynomial-shaped curves of the Fox thermal mass meters (Figures 3-9 through 3-15). The comparison between the measured and adjusted (averaged) flow rates recorded during all well cycles during the summer phase testing is shown in Figures 3-16a-b, respectively.

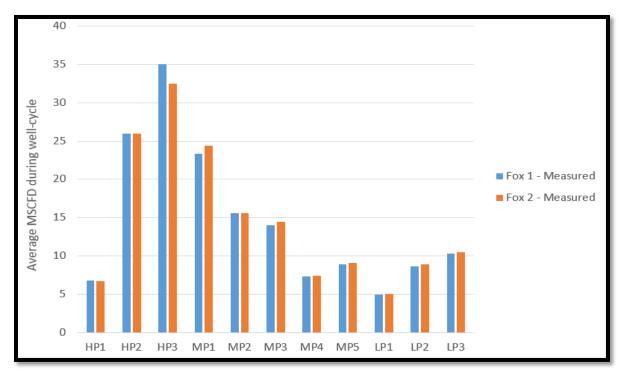


Figure 3-16a. Measured flow rate from the Fox thermal mass meter (pre-adjustment)

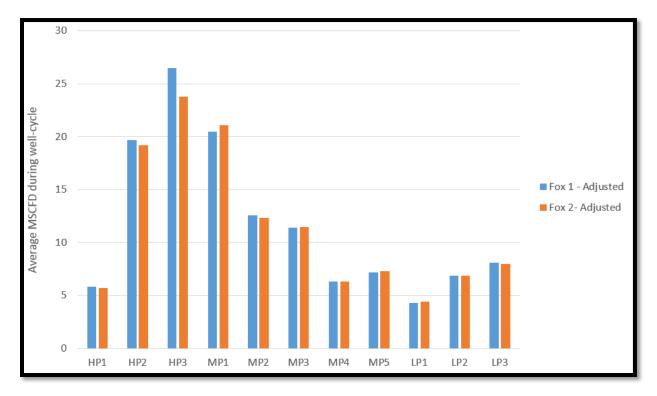


Figure 3-16b. Measured flow rate from the Fox thermal mass meter (post-adjustment)

The adjustment of the Fox thermal meters to take into consideration the compositional change was almost consistent between the two thermal mass meters installed on the riser. For the upper thermal mass meter (i.e. Fox 1), the post-adjustment correction was lower by 18.1% than the pre-adjustment (actual recording), while for the lower thermal mass meter (Fox 2), the post-adjustment correction was lower by 19.60%. Therefore, it is assumed in this report that the average uncertainty due to compositional change is the average between the two thermal mass meters, therefore 18.85%.

In conclusion, by combining the uncertainties discussed above, the total uncertainty of the FT3 can be determined from equation (2-5) in subsection 2.2:

$$\sqrt{(0.005^2) + (0.002^2) + (0.01^2) + (.1885)^2} = 18.88\%$$

3.2.5 List of related files / documentation

For *each* testing season (i.e. winter and summer), the following tests were performed on three FT3 meters used at the test site, namely:

- Calibration report for FT3 on top of riser (S/N 21773) two curves (2 gas compositions)
- Calibration report for FT3 on PRV (S/N 21775) two curves (2 gas compositions)
- Calibration report for FT3 on top of riser (S/N 21776) three curves (3 gas compositions)
- Winter CAL-V calibration validation for S/N 21773
- Winter CAL-V calibration validation for S/N 21775
- Winter CAL-V calibration validation for S/N 21776
- Summer CAL-V calibration validation for S/N 21773
- Summer CAL-V calibration validation for S/N 21775
- Summer CAL-V calibration validation for S/N 21776
- As-Found calibration certificate for S/N 21773 (summer testing only)
- As-Found calibration certificate for S/N 21775 (summer testing only)
- As-Found calibration certificate for S/N 21776 (summer testing only)

3.4 Vane Anemometer

3.4.1 Description and principle of operation

The vane anemometer (also known as vane wheel flow sensor) is a mechanical velocity anemometer that measures velocity and volumetric flow rate. It is used in conjunction to the Fox thermal mass meters to measure the flash gas volumetric flow rate during a well cycle. A vane anemometer consists of a small vane wheel that rotates in the same axis of rotation as that of the flow, as illustrated in Figure 3-17.

Figure 3-17. Vane anemometer wheel [11]

The rotational speed of the vane wheel (denoted as " ω ") is directly proportional to the velocity of the gas (e.g. air, flash gas etc.) based on the following equation (3-8):

$$U = \omega * r \tag{3-8}$$

Where:

U is the velocity of the measured gas (m/s) ω is the rotational speed of the vane wheel (rad/s) r is the distance of each cup from the rotational axis (m)

3.4.2 Output specifications

The vane anemometer used in the test site was connected directly to the pipe. Any changes to the pipe diameter and the velocity profile were made through a HART communicator via modem adapter for PC connection and UCOM PC software. The specification for the vane anemometer are illustrated in Table 3-15.

Specification	mA output
Analog output flow	4–20 mA
	Maximum resistance = 500 Ohms
Output limit value or quantity pulse	Potential-free relay contact (normally-open),
	Max = 300 mA / 27 VDC
Power supply	24 VDC (20–27 VDC)
Power consumption	< 5 W

Table 3-15: Specifications of Vane Wheel Flow Sensor ZS25

3.4.3 Summary of calibration procedures

The calibration process of the vane anemometer is incorporated in the Quality Management Systems (QMS) DIN EN ISO 9001:2008 and is carried out in close compliance with ISO 17025. A series of six data points of known air velocities is compared with the measured velocity recorded by the anemometer.

To perform the calibration process, the vane anemometer flow rate was recorded in a 75 mm pipe diameter and a profile factor³ of 0.796. The recorded flow rate was converted into a velocity using the following equation (3-9):

$$v_{measured} = Q_{measured} * \frac{1}{A_{75mm}} * \frac{1}{3,600} * \frac{1}{PF_{75mm}}$$
(3-9)

Where:

 $V_{measured}$ is the calculated velocity (m/s) $Q_{measured}$ is the recorded flow rate (m³/hr) A_{75mm} is the cross sectional area of the pipe (m²) PF_{75mm} is the position factor based on a pipe diameter of 75mm (v_{average} / v_{local} = 0.796) 3,600 is the conversion factor (seconds/hour)

3.4.4 Summary of calibration results

The vane anemometer was calibrated against six known reference velocities from 1 to 20 m/s. The deviations of the recorded velocities from the reference velocities were recorded and plotted with a tolerance limit⁴, as shown in Figure 3-18.

³ The profile factor (denoted PF) specifies the ratio of mean flow velocity in the measuring section and the flow velocity measured in the sensor.

⁴ The measurement uncertainty has less than 1.5% of the measured value and 0.5% of terminal value.

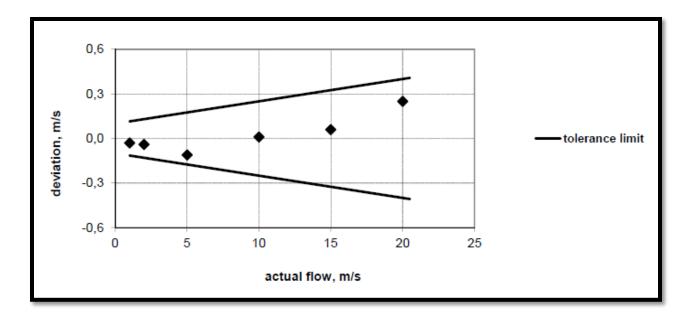


Figure 3-18. Vane anemometer calibration results with tolerance limit

Determination of measuring uncertainties

The measuring uncertainties shown on the calibration certificate are determined according to the "Guide of Expression of Uncertainty in Measurement". The expanded measurement uncertainties result from the standard measurement uncertainties being multiplied with the coverage factor k = 2. The value of the measureable variable lies as a rule with a probability of approximately 95% within the normal distribution. The standard uncertainty of measurement is determined according to DKD-3 / EAL – R2 (German translation of publication EAL-R2 Expression of the Uncertainty of Measurement in Calibration) [12].

Flow measurement in different pipe diameters

The in-situ measurements were conducted under a different pipe diameter than the calibration. Additionally, the calibration gas differs (in most cases) from the process gas being measured in the field, which consequently requires some adjustment to both the flow rate and the profile factor.

The actual local (i.e. centerline) velocity of the gas includes a gas density correction term that considers the density ratios, as show in equation (3-10):

$$v_{actual} = v_{measured} * \frac{v_{ref}}{v_{cal}} - v \tag{3-10}$$

Where:

v_{actual} is the actual local velocity (m/sec)

v_{measured} is the local velocity measured by the vane anemometer from equation (3-9) (m/s)

 v_{ref} is reference gas velocity from the vane anemometer calibration (m/s) v_{cal} is the gas velocity measured by the vane anemometer during the calibration (m/s) v is the gas correction value due to compositional change (m/s)

The density of gases can be strongly modified against pressure and temperature. Such severe modifications have a minor impact on the measured value of a vane wheel sensor. This impact manifests itself in a determinable correction value, which is added to or subtracted from the measured value. The percentage impact of this correction value is however negligible with average to high velocity flow. With low and very low values, consideration of the density correction becomes more expedient.

To determine this correction value the measuring range initial value (starting value) of a vane wheel is examined. The specified starting value in the vane wheel sensor (0.4 m/s) arises from a medium density of 1.204 kg/m³ (factory calibration). The only slightly deviating actual starting value, even with considerably different working density of the medium (in the actual application) ensues in good approximation of the following:

$$v_{0,real} = v_{0,spec} * \sqrt{\frac{1.204}{\rho_{real}}}$$
 (3-11a)

Where:

 $v_{0,real}$ is the actual smallest starting value (m/s) $v_{0,spec}$ is the specified smallest starting value (m/s) ρ_{real} is the actual gas density (kg/m³)

The correction value is now the difference between real and specified starting value. The characteristic of the sensor is displaced by this value, as shown in equation (3-11b):

$$v = v_{0,real} - v_{0,spec} \tag{3-11b}$$

If the operating density of the medium is greater than the calibration density of 1.204 kg/m³, then the determined correction value must be deducted from the measured value. If it is less than the calibration density of 1.204 kg/m³, then the determined correction value must be added to the measured value.

Since the in-situ nominal pipe diameter is 3.068 inches (77.93 mm), a new profile factor is obtained to be 0.802. This results in a new equation to estimate the vane anemometer flow rate that is adjusted to pipe diameter and density change, based on the following equation (3-12).

$$Q_{actual} = v_{actual} * PF_{77.93mm} * A_{77.93mm} * 3,600$$
(3-12)

Where:

 Q_{actual} is the actual gas flowrate through the pipeline (m³/hr) v_{actual} is the actual local velocity (m/sec) – from equation (3-10) PF_{77.93mm} is the position factor based on a pipe diameter of 75mm ($v_{average} / v_{local} = 0.802$) $A_{77.93mm}$ is the cross sectional area of the in-situ pipe (m²) 3,600 is the conversion factor (seconds/hour)

A post-summer, "as-found" test was performed on the vane anemometer (Figure 3-19), which attempted to check whether a drift in the anemometer's response has occurred during the testing period, as was indicated from the as-found test of the thermal meters used in adjacent to the vane anemometer during the summer testing period (Figures 3-19 and 3-20).

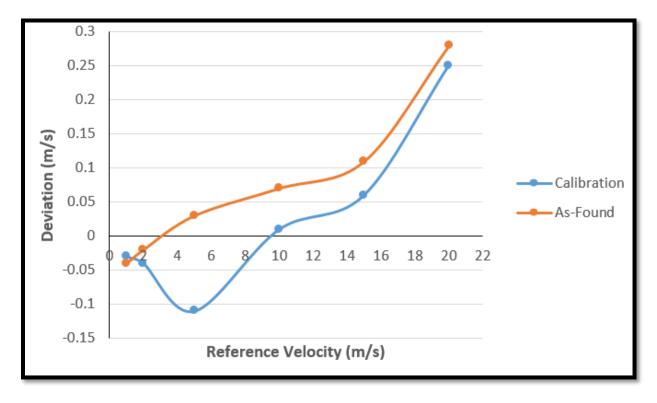


Figure 3-19. Pre-summer calibration and post-summer as-found tests for the vane anemometer

During active well-cycles, the typical highest instantaneous flow rate recorded by the vane anemometer was approximately 160 m³/hr, or 9.3 m/s. However, for typical breathing losses during the day, the typical highest instantaneous flow rate was approximately 75 m³/hr, or 4.3 m/s. As indicated from Figure 3-19, it is clear that the drift in the anemometer's response is the largest during lower flow rates, although it does not surpass 3%. This can be explained due to the fact that there are many more breathing cycles during the day than active well-cycles, which would most likely lead to higher fouling and consequently to a larger drift in the anemometer's response.

Similar to Figure 3-18, the as-found test is shown to be well within the tolerance limit of the measurements (less than 1.5% of the measured value and 0.5% of terminal value), as illustrated in Figure 3-20.

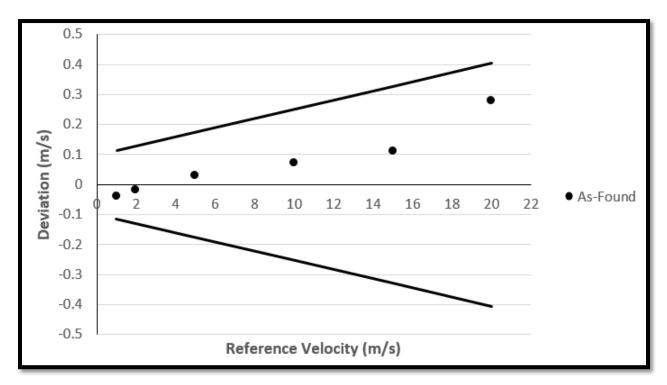


Figure 3-20. Tolerance limits (black lines) of as-found test (dots)

In conclusion, a drift was observed in the vane anemometer, in particularly at the flow velocity most common to its application (5 m/s), as explained above. However, since the as-found test has shown that the vane anemometer is within the measurement tolerance limits, no post-correction needs to be applied.

Comparison of the vane anemometer with Fox thermal mass meters

As discussed above, the main objective of the vane anemometer during this study was to serve as an additional check on the thermal mass meters, and *vice versa*. Since the vane is a mechanical velocity anemometer, whereas the Fox is a thermal mass meter, it was hoped that the two independent meter types would read similar values, therefore strengthening the estimation of the total gas volume produced during a cycle, a pertinent parameter for the mass balance calculations.

A comparison of the average gas flow rate during a well cycle, as recorded by the vane and computer for the two thermal mass meters (post-adjustment for compositional effect) is illustrated in Figure 3-21.

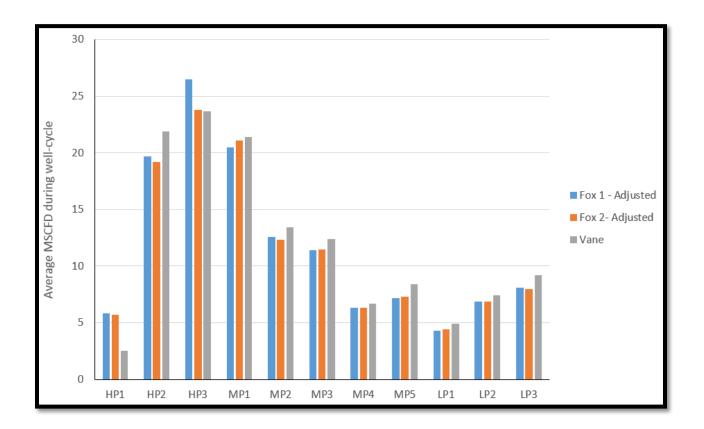


Figure 3-21. Comparison of the three gas meters during summer testing

After the compositional adjustment to the two Fox thermal mass meters, it is evident from Figure 3-21 that the three gas meters are in good agreement, aside from well cycle HP1 which had technical difficulties.

3.4.5 List of related files / documentation

- Vane anemometer operating manual
- Vane anemometer calibration certificate
- Vane anemometer as-found certificate

3.5 ABB Total Flow

3.5.1 Description and principle of operation

The in-situ ABB total flow is a device that measures the gas flow rate going from the high pressure separator to the sales line. The total flow measures the gas flow rate by a pressure differential (in inches of water), which can be converted to flow rate if the orifice size is known, as shown in equation (3-13) [14]:

$$Q_{\nu} = 7709.61 * E_{\nu} * Y_{1} * C_{d} * d^{2} * \sqrt{\frac{Z_{s} * P_{f1} * h_{w}}{G_{r} * Z_{f1} * T_{f}}}$$
(3-13)

Where:

 Q_v is the standard volume flow rate (standard ft³/hr)

C_d is the orifice plate discharge coefficient⁵ (dimensionless)

 E_v is the velocity approach factor (dimensionless)

Y₁ is the upstream gas expansion factor (dimensionless)

d is the orifice bore diameter (inches)

Gr is the real gas relative density (dimensionless)

Z_s is the compressibility factor of gas at standard conditions (dimensionless)

Z_{f1} is the compressibility factor of the upstream gas at flowing conditions (dimensionless)

P_{f1} is the upstream pressure (psia)

T_f is the absolute temperature of gas at flowing conditions (degree Rankine)

h_w is the differential pressure (inches of water at 60°F)

The velocity approach factor, E_v , relates to the geometry of the meter run by relating the velocity of the flowing fluid in the upstream pipe to the velocity in the orifice bore, as shown in equation (3-14) [14]:

$$E_{\nu} = \frac{1}{\sqrt{1-\beta^4}} \tag{3-14}$$

Where:

 $\boldsymbol{\beta}$ is the ratio of the orifice bore diameter to the pipe diameter.

The gas expansion factor, Y_1 , relates to the geometry of the meter run, the fluid properties and the pressure drop. It is an empirical term used to adjust the coefficient of discharge to account for the change in the density from the fluid's velocity change and static pressure change as it moves through the orifice, as shown in equation (3-15) [14]:

⁵ This is an empirical term that relates to the geometry of the meter run and relates the true flow rate to the theoretical flow rate. An approximate value is 0.6 (i.e., a square edged orifice passes about 60% of the flow one would expect through a hole the size of the orifice bore).

$$Y_1 = 1 - (0.41 + 0.35\beta^4) \frac{h_w}{27.707\kappa * P_{f_1}}$$
(3-15)

Where:

 κ is the isentropic exponent of the gas = C_p/C_v (dimensionless)

The real gas relative density is a property of the fluid and is defined in equation (3-16) [14]:

$$G_r = \left(\frac{MW_{gas}}{MW_{air}}\right) \left(\frac{Z_{b,air}}{Z_{b,gas}}\right)$$
(3-16)

Where:

 MW_{gas} is the molecular weight of the measured gas (lb/lb-mol) MW_{air} is the molecular weight of air (lb/lb-mol) $Z_{b,air}$ is the compressibility factor of air at 14.73 psia and 60°F $Z_{b,gas}$ is the compressibility factor of the measured gas at 14.73 psia and 60°F

3.5.2 Output specifications

Table 3-16: Specifications of ABB Total Flow (Model XFC G4 6413)

Specification	mA output
Analog input flow	0–5 VDC (Maximum resistance of 250 ohms)
Pulse input bandwidth	Up to 20 kHz
Maximum allowable voltage range (input)	-0.5 VDC to 15 VDC
Maximum allowable voltage range	0.5 VDC to 26.5 VDC
(output)	
Power supply	Battery 12 VDC
Charger	Solar of 14–26 VDC

3.5.3 Summary of calibration procedures

The main calibration tests of the ABB total flow include the following tests with accuracy traceable to NIST:

- a. <u>Calibration of the static pressure</u>: 3 data points are applied to the cell from a known traceable source with resultant pressure values entered into the XFC G4 using PCCU software: (1) atmospheric pressure; (2) 50% of upper range limit (URL) and (3) 100% of URL (500 psia).
- b. <u>Calibration of the differential pressure</u>: 3 data points are applied to the cell from a known traceable source with resultant pressure values entered into the XFC G4 using PCCU software: (1) zero; (2) 50% of URL and (3) 100% of URL (250 inches of water).

c. <u>Calibration of thermoprobe</u>: The calibration procedure are based on ASTM E-644-06. The probe is immersed in a constant temperature bath with a reference thermometer that determines the actual test temperature. The readings are compared, and correction factors for the probe are calculated. Verification of the thermoprobe is done at one point, as close to operating temperature as practical. The verification is done using a test thermos-well, thermometer and flowing gas temperature (if gas is flowing) or a bath and test thermometer. Must be calibrated to within ±0.5% of reading of calibration equipment reading.

From equation (3-13) it is evident that an inverse correlation exists between the recorded flow rate and the gas temperature. Furthermore, a direct relationship exists between the recorded temperature and pressure, therefore if the meter is all meters are not calibrated correctly, lower flow rates will be measured.

The calibration process is typically performed for orifice meters with beta ratios (orifice to pipe diameter ratio, d/D) from 0.20 to 0.60 on flange tap meters. However, unless otherwise approved or required by the BLM, the low flow cutoff (set up by the user) cannot be set higher than 0.5 inches of water otherwise the possible pulsation effects can be considered as a flow, even when the downstream valve (of the ABB total flow) is shut in (per requirement of API 21.1.4.2.3).

3.5.4 Summary of calibration results

Two calibration tests were performed on the ABB Total Flow meter prior to the winter and summer phase testing weeks. For each calibration test performed, if the as-found values were not within the uncertainty range, a new calibration has to be performed. These ranges are:

- a. For the static pressure: ±0.25% (accuracy of the electronic flow meter) of the calibration equipment set point must be calibrated.
- b. For the differential pressure calibration: ±0.12% (accuracy of the electronic flow meter).
- c. For the temperature calibration: ±0.50% of reading.

A comparison between a standard and the as-found measurements was performed for the static pressure, differential pressure and the temperature, as shown below in Tables 3-17 through 3-19.

Table 3-17: ABB's Static Pressure Calibration

Standard (psia)	As-found "Winter" (psia)	Flow Rate Error%	As-found "Winter" (psia)	Flow Rate Error%
0.00	12.41	0.45	12.28	-0.08
250.00	262.56	0.05	262.10	-0.04
500.00	512.36	0.01	512.06	-0.02

Table 3-18: ABB's Differential Pressure Calibration

Standard (inches of water)	As-found "Winter" (inches of water)	Flow Rate Error%	As-found "Winter" (inches of water)	Flow Rate Error%
0.00	-0.01	0.45	0.00	
125.00	124.97	-0.05	125.01	0.00
250.00	249.94	-0.01	249.95	-0.01

Table 3-19: ABB's Temperature Calibration

Testing Season	Standard (°F)	Winter "Actual" (°F)	Flow Rate Error%
Winter	56.07	55.46	0.55
Summer	95.96	96.15	-0.10

The above tables indicate that the three major calibration parameters of the ABB Total Flow meter (static pressure, differential pressure and thermometer) have accuracy traceable to NIST, which implies that the recorded sales gas flow rates are representative of the actual flow rates of the tested high-pressure separator.

3.5.5 List of related files / documentation

- Calibration certification on the thermoprobe (measures temperature)
- Certification on the pressure equipment used to calibrate the total flow gas meter
- ABB Total Flow calibration certificate (static pressure, differential pressure and temperature) from 02/26/2016.
- ABB Total Flow calibration certificate (static pressure, differential pressure and temperature) from 07/20/2016.

3.6 Liquid Level Sensor (2100 DLS)

3.6.1 Description and principle of operation

The 2100 digital level sensor (DLS) is a device that measures and reports fluids level and temperatures in storage tanks. The sensor uses a float imbedded with magnets to sense the top of a liquid level. There is a temperature sensor mounted inside the tube one-foot from the bottom. When the sensor is polled for data, a series of microprocessors read and determine the position of the float along the sensor tube. The main microprocessor then calculates the level and temperature and returns the data in a serial stream. Additionally, the DLS monitors up to eight temperature sensors (RTD8 through RTD15) in the same tank at different heights.

3.6.2 Output specifications

Category	Specification
Operating temperature range	(-)40°C–85°C
Power supply	5.6–12.9 VDC
Output signal	4–20 mA (when connected to digital-to-analog converter board)
Power consumption	15 mA nominal 20 mA maximum

Table 3-20: Model 2100 DLS Specifications

3.6.3 Summary of calibration procedures

The only calibration required for the DLS is to set the offset value using the HHC-1000 Hand-Held Communicator. This can be done in the DLS or at the Electronic Flow Measurement (EFM), Remote Terminal Unit (RTU) or Programmable Logic Controller (PLC) by determining the difference of the level between the electronic reading and the actual fluid level in the tank, measured with an approved gauge line. Once the level offset is entered in either the DLS or SCADA system, the level offset will be added to the raw value of the DLS to provide and accurate fluid level.

The calibration procedure to set the initial offset is as following:

- a. Using the Hand-Held Communicator (HHC-1000), connect to the DLS and take initial readings of level and temperature.
- b. If readings are providing both water and oil levels, then verify that the two readings are more than 3 inches apart. If the difference is less than 3 inches, the two floats will be touching and a valid offset cannot be determined.

- c. Verify that the water level is more than 3 inches. If less than 3 inches, then the water float is sitting on the bottom of the tank and level offset cannot be determined.
- d. Using a gauge line, measure the actual level in the tank and note the level. Subtract the electronic reading from the gauged level to determine the level offset value.

As an example, if the actual level is 156.25" and the DLS reading is 155.50", then the offset value will be 0.75" (156.25-155.50=0.75).

The temperature offset is determined by comparing the digital temperature signal from the insitu sensors to a calibrated temperature sensor and obtaining the difference in temperature. This offset is added to or subtracted from the reported temperature and input into the EEPROM in the sensor. The level offset, for accuracy, can only be performed in the field in a tank that has sufficient fluid to raise the float. Since the float will float on the surface of a fluid at varying levels due to the specific gravity of the fluid, this can only be performed while the sensor is in service. This offset will only need to be performed once, during installation, since the buoyancy of the float will not change, and the specific gravity of the fluid is fairly constant.

3.6.4 Summary of calibration results

An as-found test on the liquid level sensor which was compared with a manual gauge was performed on 11/9/2016 prior to well cycle (1) and post-well cycle (2), as shown in Figure 3-22.

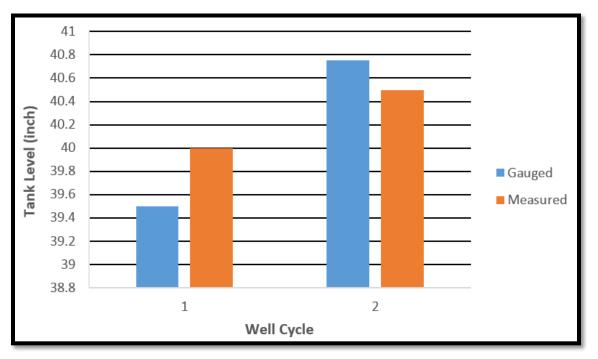


Figure 3-22. As-found test on the liquid level sensor

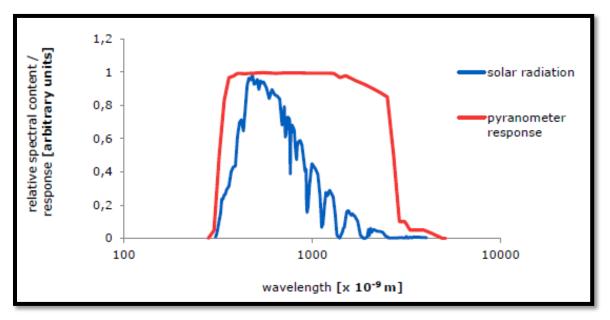
The as-found test indicates an average difference of $\pm 3/8''$, which is higher than the manufacturer's specifications for this sensor (1/8''). This observed difference is consistent with field observations performed during the winter and summer testing periods.

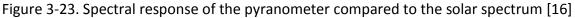
Unlike the level sensor, an as-found test on the eight temperature sensors was not performed, since it was only done during installation (as indicated in the previous section). The temperature offset for each of the eight temperature sensors is summarized in Table 3-21.

Data logger ID	Location	Temperature Offset (°F)
RTD 8	In tank, cernterline, 14" above tank bottom	0
RTD 9	In tank, cernterline, 32" above tank bottom	0.5
RTD 10	In tank, cernterline, 52" above tank bottom	0.5
RTD 11	In tank, cernterline, 72" above tank bottom	1.5
RTD 12	In tank, cernterline, 92" above tank bottom	0.5
RTD 13	In tank, cernterline, 112" above tank bottom	2.0
RTD 14	In tank, cernterline, 135" above tank bottom	1.5
RTD 15	In tank, cernterline, 152" above tank bottom	-0.4

Table 3-21: Temperature Offset of DLS Sensors

3.6.5 List of related files / documentation


- Digital Level Sensor 2100 User Manual
- Temperature sensors calibration


3.7 Solar Radiation Meter (Pyranometer)

3.7.1 Description and principle of operation

A pyranometer measures the solar radiation received by a plane surface from a 180° field of view angle. The radiation, expressed in W/m^2 , is called "hemispherical" solar radiation, covering a radiation spectrum between 285 and 3000 nm (see Figure 3-23). The pyranometer has two main components:

- (1) A thermal sensor with black coating that absorbs all solar radiation and, at the moment of absorption, converts it to heat. The heat flows through the sensor to the sensor body. The thermopile sensor generates a voltage output signal that is proportional to the solar irradiance.
- (2) A glass dome that limits the spectral range from 285 to 3000 nm, while preserving the 180° field of view angle. Another function of the dome is that it shields the thermopile sensor from the environment (convection, rain).

3.7.2 Output specifications

The SR05-DA2 measures irradiance in W/m^2 as a digital output and as a 4-20 mA output. It must be used in combination with suitable power supply and a data acquisition system which uses the Modbus communication protocol over TTL or one that is capable of handling a 4-20 mA current loop signal.

Specification	Value	Winter	Summer
Transmitted range	0–1600 W/m ²		
Supply voltage	5–30 VDC		
Analog output	4–20 mA		
flow			
Power	< 240 mW at		
consumption	12 VDC		
Response time	11.1 seconds		
Accuracy class ⁶		Minute: <11.4% (±182.4 W/m²)	Minute: <8.4% (±134.4 W/m ²)
		Hour: <9.9% (±158.4 W/m²)	Hour: <6.2% (±99.2 W/m ²)
		Day: <8.1% (±129.6 W/m²)	Day: <5.9% (±94.4 W/m²)

3.7.3 Summary of calibration procedures

The SR05 is calibrated based on ISO 9847 (1992): Solar Energy – "calibration of field pyranometers by comparison to a reference pyranometer" [15] and is recommended by the manufacturer to be repeated every two years. The calibration procedure depends whether it is performed indoors or outdoors. The SR05 manufacturer (Hukseflux) calibrates based on the indoor calibration, therefore this procedure will be described in this sub-section. Calibration traceability was done based on the WRR (World Radiometric Reference) maintained at the World Radiation Center in Davos, Switzerland.

An overview of the indoor calibration procedure goes as following [15]:

- a. The reference and test pyranometers are aligned together at the same orientation so that the hemispheres are geometrically symmetrical.
- b. The reference and test pyranometers are connected to a common digital voltmeter, using a proper shielding. Once connected, the electrical continuity, signal polarity, signal strength and stability are compared.
- c. The loci of both instruments is compared to test whether the two instruments receive the same irradiance.
- d. Either:
 - I. An instantaneous voltage readings of 21 points of the reference and test pyranometers is taken simultaneously. Or:
 - II. Simultaneous integrated voltage readings of the reference and test pyranometers are taken over a minimum of five periods of sufficient length (8 minutes typically) to ensure an accuracy of 0.25% and a precision of ±0.25%.

⁶ Accuracy values refer to mid-latitude conditions.

- e. The bodies' temperature of both instruments are taken, as well as of the wall of the integrating sphere.
- f. A general mathematical treatment described in section 5.4.1 of ISO 9847 is applied.

3.7.4 Summary of calibration results

The SR05 that was used in the test-site was well within the recommended two-year calibration window suggested by the manufacturer. The calibration results are as following:

- a. Sensitivity: $S = 20.02 \times 10^{-6} V/(W/m^2)$
- b. Uncertainty: $\pm 0.24 \times 10^{-6} \text{ V/(W/m^2)}$

The Sensitivity of the test SR05 is 0.01 mA/(W/m²). The calibration uncertainty of the SR05 (i.e. expanded uncertainty, K-2 coverage factor) as stated by the factory is 1.8%. The key specification criteria impacting measurement uncertainty at the field level are: calibration uncertainty, temperature response, directional response, and routine sensor maintenance (i.e. cleaning and checking instrument leveling).

3.7.5 List of related files / documentation

The following information is related to the SR05 pyranometer:

- Product certificate (including calibration results)
- SR05 manual

4.0 Pressure Indicating Transducer (PIT)

4.1 <u>Background</u>

A pressure transducer (often called a pressure transmitter) is a device that senses pressure and converts it into an electric signal where the amount depends upon the pressure applied. A pressure transducer consists of two main parts: (1) an elastic material which will deform when exposed to a pressurized medium (e.g. gas or liquid); and (2) an electrical device which detects the deformation.

The conversion of pressure into an electrical signal is achieved by the physical deformation of strain gages which are bonded into the diaphragm of the pressure transducer. Electrical resistance is proportional to the resistivity and length of the pressure-sensor channel and inversely proportional to the cross-sectional area of the channel according to the electric-resistance theory form given by equation (4-1):

$$R = \rho\left(\frac{l}{A}\right) \tag{4-1}$$

Where:

R is the electrical resistance (ohms) ρ is the resistivity (ohms*m) I is the length of the pressure sensor (m) A is the cross-sectional area of the pressure sensor (m²)

Pressure applied to the pressure transducer produces a deflection of the diaphragm, therefore changing its cross-sectional area. This change introduces a strain to the silicon gages within the sensor assembly. The differential pressure transducer measures the difference between two pressures applied to opposite sides of the silicon strain gauge microsensor. The resistance change is then converted to 4 to 20 mA signal (be taken into an analog input card in the PLC or it may be taken to a strain gage conditioner card in an instrumentation system) proportional to the square root of differential pressure.

Pressure transducers are generally available with three types of electrical output: (1) millivolt; (2) amplified voltage; and (3) 4-20 mA. In general, this chapter will address the different transducers in accordance with the above classification, such that [17]:

1. <u>Pressure sensor (voltage output is normally around 30 millivolts)</u>: The actual output is directly proportional to the pressure transducer input power or excitation. If the excitation fluctuates, the output will change also. Because of this dependence on the excitation level, regulated power supplies are suggested for use with millivolt

transducers. Due to the low output signal, the pressure sensor is very susceptible to electrical noise.

- 2. <u>Pressure transducer (voltage output is normally 1–5 VDC)</u>: Includes integral signal conditioning which provide an amplified voltage output than a millivolt transducer. The output of the transducer is not normally a direct function of excitation, therefore unregulated power supplies are often sufficient as long as they fall within a specified power range. Due to the higher level output (compared to pressure sensors), the pressure transducer is not as susceptible to electrical noises, thus making it very applicable to use in many industrial applications.
- 3. <u>Pressure transmitter (4-20 mA signal)</u>: The 4-20mA signal is least affected by electrical noise and resistance in the signal wires, thus these transducers are best used when the signal must be transmitted long distances (not when lead wire is longer than 1000 ft).

4.2 <u>PIT1</u>

4.2.1 Description and principle of operation

PIT1 is a pressure transducer manufactured by Foxboro. It is located on the high-pressure separator's headspace volume. It is used in conjunction with PIT6 to (downstream of it) to determine the true pressure reading of the high pressure separator, which was manipulated by a back-pressure regulator.

4.2.2 Output specifications

Specification	Value
Pressure range	0–500 psig
Analog input flow	9–30 VDC
Analog output flow	1–5 VDC
Accuracy class	±2% of measured flow

Table 4-1: Specifications of PIT1

4.2.3 Summary of calibration procedures

The factory based calibration is characterized over the full rated differential pressure of the transducer. The applied differential pressure is measured and converted into an internal digital value that is always available (regardless if the transducer is or is not calibrated). This allows the transducer to measure any applied differential pressure within its range limits regardless of the calibrated range.

The transducer is factory calibrated to either a specified or a default calibration range. This calibration optimizes the accuracy of the internal digital value of differential pressure over that

range (that is, calibration assures that the transducer rated accuracy is achieved over the calibration range). If no range is specified, the default range is zero to the sensor upper range limit (URL).

Field calibration is performed in-situ and is done based on a "3-point linear" method, where the lowest, highest and mid-point transducer's ranges are selected to test its functionality.

In-situ calibration procedure ("3-point linear"):

- a. The pressure transducer is brought to atmospheric pressure to calibrate LOW_ADC. This calibration is done in the PLC by comparing RAW_ADC value to LOW_ADC value and adjusting LOW_ADC to match RAW_ADC value.
- b. The pressure transducer is isolated and pressurized to max range to calibrate HIGH_ADC. This calibration is done in the PLC by comparing RAW_ADC value to HIGH_ADC value and adjusting HIGH_ADC to match RAW_ADC value.
- c. The pressure transducer is isolated and pressurized to mid-range to verify linear calculation.
- d. The pressure transducer will be blown down to atmospheric pressure and the LOW_ADC value will be adjusted. Then the PIT is pressurize to its maximum range (500 psig for PIT1) and the HIGH_ADC value is adjusted. Afterwards, the pressure is released down to the mid-range pressure (250 psig for PIT1) and verification that the above calculation is delivering an EU reading of 250 psig is performed. In the event that EU is reading incorrectly at mid-range, a second calibration test will be performed. In the event that EU reads incorrectly a second time, the PIT will be replaced and all calibration steps for this specific PIT will be repeated.

The engineering unit value from the analog transducer is determined (e.g. for PIT1 in this case) in the PLC using equation (4-2):

$$PIT1 = \left\{ \begin{bmatrix} (PIT1_{Raw_ADC} - PIT1_{Low_ADC}) \\ (PIT1_{High_ADC} - PIT1_{Low_ADC}) \end{bmatrix} * PIT1_{Range} \right\} + PIT1_{Low_EU}$$
(4-2)

Where:

 $\mathsf{PIT1}_{\mathsf{Raw}_\mathsf{ADC}}$ is the current reading of the ADC

 $PIT1_{Low_ADC}$ is the reading of the ADC at the bottom of the range

 $\mathsf{PIT1}_{\mathsf{High}_\mathsf{ADC}}$ is the reading of the ADC at the top of the range

PIT1_{Range} is the total range of the analog device (e.g. 0 psig to 500 psig \rightarrow Range = 500 psig) PIT1_{Low} is the calculated pressure at the bottom of the range

4.2.4 Summary of calibration results

The manufacturer did not produce a calibration certificate for this meter.

An "as-found" test performed on the transducer post-summer testing was carried out in-situ. The actual pressure readings were compared with five pressure points: 0 psig (smallest range), 175 psig (low pressure group category), 225 psig (medium pressure group category), 260 psig (high pressure group category) and 500 psig (maximum range) as illustrated in Figure 4-1.

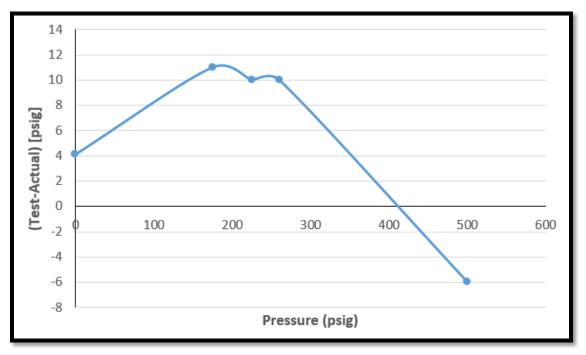


Figure 4-1. As-found test of PIT1

As illustrated from Figure 4-1, the as-found test indicates that the pressure transducer was over-reading the pressure by approximately 10 psig for the desired pressure ranges pertinent to the study. Nevertheless, since the as-found test carried out three months after the conclusion of the summer phase testing, the effect of time on the transducer's reading is unknown.

4.2.5 List of related files / documentation

• Instruction manual for I/A Series Pressure Transmitters (Foxboro).

4.3 <u>PIT2</u>

4.3.1 Description and principle of operation

PIT2 is a pressure transducer manufactured by Ashcroft. It is located at the bulk tank headspace, measuring the gas headspace pressure (in oz/in²). The upper range of PIT2 extends up to 24 oz/in², therefore implying that the typical gas pressures experienced at the tank headspace is well within its measurement range (i.e. ~14-15 oz/in² maximum).

4.3.2 Output specifications

Specification	
Pressure range	0–1.5 psig
Analog input flow	10–30 VDC
Analog output flow	1–5 VDC
Temperature range	(-)4–185°F
Accuracy class	±0.5% of span (total error band)

4.3.3 Summary of calibration procedures

The pressure transducer is logged into a temperature compensated oven and is leak tested at full scale. The transducer is then run through calibration at different temperatures and is linearized at zero pressure, mid pressure and full scale pressures. This is done several times over the temperature specification range.

The manufacturing company of PIT2 (Ashcroft) performs the calibration process based on 9 point individual NIST-traceable chart. Nine different pressure points are selected so that the output (in VDC) is recorded. The certified calibration chart made per ASME B40.100 2013 ("Pressure gauges & attachments") includes an accuracy range that was determined after considering non-linearity (terminal point method), hysteresis⁷, non-repeatability, zero offset and span setting errors.

For in-situ calibration, see guidelines set forth in sub-section 4.2.3.

4.3.4 Summary of calibration results

Using the calibration procedure discussed above, the transducer's accuracy was tested using nine pressure points. Calibration results indicated that all nine points were within the $\pm 0.5\%$ accuracy reading, with the highest uncertainty margins being between 45% and 75% of the

⁷ The maximum deviation between the increasing and decreasing characteristic curves.

pressure (10.8 and 18 oz/in², respectively). All nine points had a positive error band, meaning that the instrument was over-reading the pressures. Summary of the calibration results is illustrated in Figure 4-2.

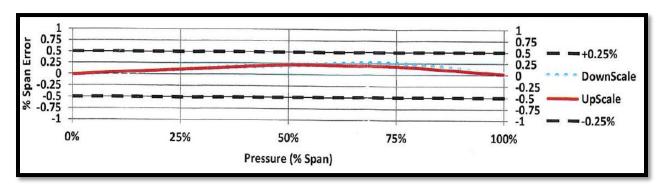


Figure 4-2. Calibration result of PIT2

An "as-found" test performed on the transducer post-summer testing was carried out in-situ. The actual pressure readings were compared with eight pressure points that are typical with the pressure reading of the tank headspace: 0 oz/in² (smallest range), 2 oz/in², 4 oz/in², 6 oz/in², 8 oz/in², 12 oz/in², 16 oz/in² and 24 oz/in² (maximum range) as illustrated in Figure 4-3.

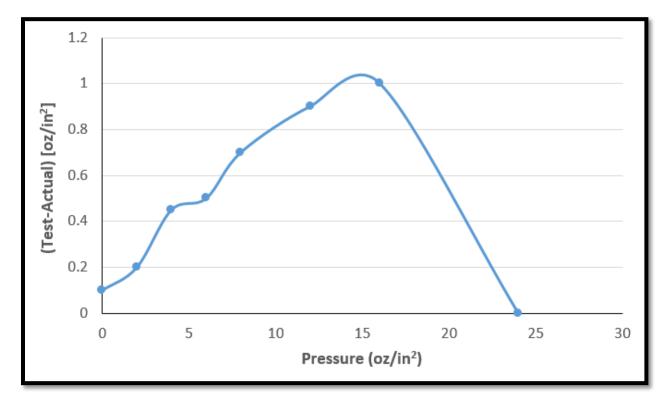


Figure 4-3. As-found test of PIT2

The as-found test performed on the transducer indicates a similar trend of having higher percentages of error for increasing pressure. Additionally, all data points are over-reading the pressures, which is another similarity to the original calibration certificate (i.e. a positive error band).

- 4.3.5 List of related files / documentation
 - Calibration certificate from manufacturer.

4.4 <u>PIT3</u>

4.4.1 Description and principle of operation

PIT3 is a low-pressure transducer manufactured by American Sensor Technology, located at the tank VOC burner line (also known as "riser"). It has a very low pressure range (0-2 psig), which makes it suitable for the pertinent measurement of flash gas pressure exiting the storage tank.

4.4.2 Output specifications

Specification	
Pressure range	0–2 psig
Analog input flow	10–28 VDC
Analog output flow	1–5 VDC
Accuracy class	< ±0.5% of measured value for 0-1 psig

Table 4-3: Specifications of PIT3

4.4.3 Summary of calibration procedures

One test voltage between 10 and 28 VDC is selected, as the sensors will operate the same throughout this range. The pressure transducer is final tested in room temperature at zero pressure, midpoint pressure (1 psig) and full pressure (2 psig) with the corresponding output signals listed at zero pressure, full span and non-linearity. If the transducer meets the specifications in the data sheet (e.g. 1 VDC for zero pressure and < 5 VDC for max rated pressure etc.), the calibration report would read "Pass".

4.4.4 Summary of calibration results

A test voltage of 17 VDC was used to test the sensor functionality during the calibration process. At zero pressure the voltage reading was 0.998 whereas at full span the voltage reading was 4.005, with very small non-linearity (0.06%). This indicates that the sensor passed the calibration test.

In addition to the calibration test, an in-site as-found test was carried out post-summer testing at the test site, using the procedure discussed in sub-section 4.2.3. Similar to PIT2, the actual pressure readings were compared with eight pressure points that are typical with the pressure reading of the tank headspace: 0 oz/in² (smallest range), 2 oz/in², 4 oz/in², 6 oz/in², 8 oz/in², 12 oz/in², 16 oz/in² and 32 oz/in² (maximum range) as illustrated in Figure 4-4.

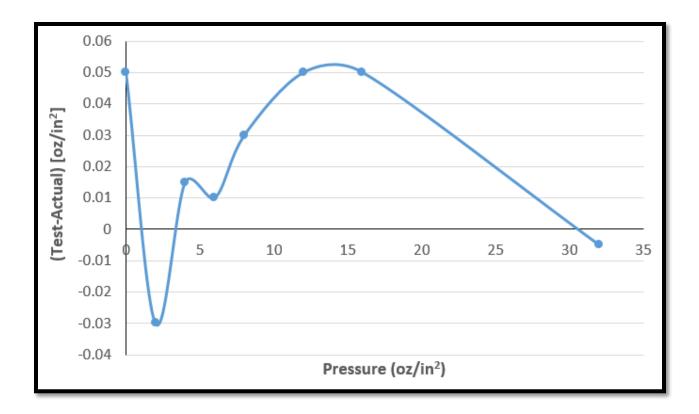


Figure 4-4. As-found test of PIT3

The as-found test on PIT3 has indicated that the pressure transducer reads very accurate values to the test pressure, as indicated by the small pressure differences. Based on the test, the average percent difference between the as-found and the calibrated values is approximately 0.45%, which is within the accuracy listed by the manufacturer, therefore giving a confidence that the pressure transducer has measured accurate pressure readings during the study.

4.4.5 List of related files / documentation

- Calibration certificate from manufacturer
- Data sheet of pressure transducer

4.5 <u>PIT4</u>

4.5.1 Description and principle of operation

PIT4 is a low-pressure transducer manufactured by Dylix Corporation. PIT4 measures the atmospheric pressure at the test site, and is located in the automation stand at the south-east corner of the storage tanks.

4.5.2 Output specifications

Specification	
Pressure range	0–1 psig
Analog input flow	8–38 VDC
Analog output flow	1–5 VDC
Accuracy class	< ±0.25% of full-scale output (FSO)

Table 4-4: Specifications of PIT4

4.5.3 Summary of calibration procedures

Calibration of PIT4 is performed in accordance to ISA-37.3-1982 (R1995) "Specifications and Tests for Strain Gage Pressure Transducers". Two or more complete calibration cycles (each with at least 11 data points) are run consecutively, using both ascending and descending directions.

From the data obtained during the calibration test, the following characteristics are determined: (1) end points; (2) full-scale output; (3) zero measured output; (4) linearity; (5) hysteresis; (6) hysteresis and linearity; (7) repeatability and (8) static error band.

Repeated calibration cycles over a specified period of time should establish both zero shift and sensitivity shift for this period of time.

4.5.4 Summary of calibration results

PIT4 was calibrated by using six different pressures with increments of 0.2 psig between each one (no check for hysteresis). The output (in VDC) was recorded for each pressure, indicating that for zero pressure the voltage was 1.017 VDC, whereas for the maximum pressure (1 psig) the recorded voltage output was 5.027 VDC. Additionally, the determined static accuracy (BFSL) was smaller than 0.25%.

In addition to the calibration test, an in-site as-found test was carried out post-summer testing at the test site, using the procedure discussed in sub-section 4.2.3. Since PIT4 is an ambient

pressure, only three pressure points (zero, mid-range and full-range) were tested in the asfound test, using a base pressure of 12.20 psia. The as-found results are illustrated in Figure 4-5.

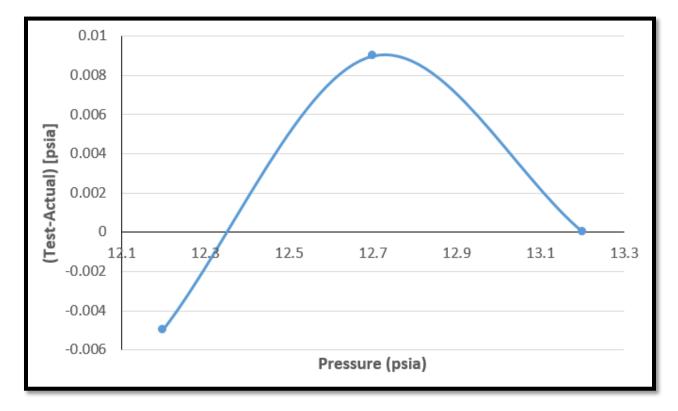


Figure 4-5. As-found test of PIT4

Results of both the calibration and the as-found tests indicate that the pressure transducer reads accurate values. However, this pressure transducer is different than the other transducers used in the test site since it needs to use a certain base pressure (12.2 psia = 0 psig), instead of measuring the barometric pressure. This implies that this pressure transducer may read inaccurate pressure readings that are not representative of the true ambient pressure.

- 4.5.5 List of related files / documentation
 - Calibration certificate from manufacturer

4.6 <u>PIT5</u>

4.6.1 Description and principle of operation

PIT5 is a pressure transducer manufactured by Ashcroft. It is located at the point where the separator-to-oil tank pipeline comes to the surface (base of up-comer). It measures the oil pressure inside the pipe. This pressure transducer was used during the winter test period (Figure 3-1) until it was discovered that during active well cycles, the oil pressure exceeds the transducer's pressure ranges, therefore it was replaced by PIT8 during the summer phase testing period.

4.6.2 Output specifications

Specification	
Pressure range	0–1.5 psig
Analog input flow	10-30 VDC
Analog output flow	1–5 VDC
Temperature range	(-)4–185°F
Accuracy class	±0.5% of span (total error band)

4.6.3 Summary of calibration procedures

See sub-section 4.3.3.

For in-situ calibration, see guidelines set forth in sub-section 4.2.3.

4.6.4 Summary of calibration results

Using the calibration procedure discussed above, the transducer's accuracy was tested using nine pressure points. Calibration results indicated that all nine points were within the $\pm 0.5\%$ accuracy reading, with the highest uncertainty margins being at around 50% of the pressure range (0.75 psig). All nine points had a positive error band, meaning that the instrument was over-reading the pressures. Summary of the calibration results is illustrated in Figure 4-5.

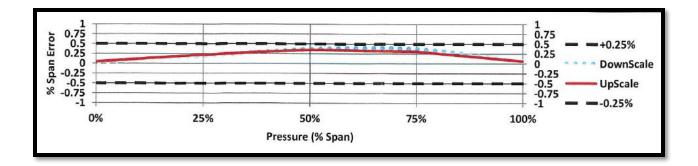


Figure 4-6. Calibration result of PIT5

No as-found test was performed on this pressure transducer.

4.6.5 List of related files / documentation

• Calibration record from manufacturer

4.7 <u>PIT6</u>

4.7.1 Description and principle of operation

PIT6 is a pressure transducer manufactured by Ashcroft. It is located at the separator dump leg, just upstream of the Coriolis meter. It is used in conjunction with PIT1 to monitor the separator pressure, as well as to calculate any potential losses between the bulk separator pressure and the dump pressure.

4.7.2 Output specifications

Specification	
Pressure range	0–500 psig
Analog input flow	10–30 VDC
Analog output flow	1–5 VDC
Temperature range	(-)4–185°F
Accuracy class	±0.5% of span (total error band)

Table 4-6: Specifications of PIT6

4.7.3 Summary of calibration procedures

See sub-section 4.3.3.

For in-situ calibration, see guidelines set forth in sub-section 4.2.3.

4.7.4 Summary of calibration results

No calibration certificate exists for this meter.

An "as-found" test performed on the transducer post-summer testing was carried out in-situ. The actual pressure readings were compared with five pressure points: 0 psig (smallest range), 175 psig (low pressure group category), 225 psig (medium pressure group category), 260 psig (high pressure group category) and 500 psig (maximum range) as illustrated in Figure 4-7.

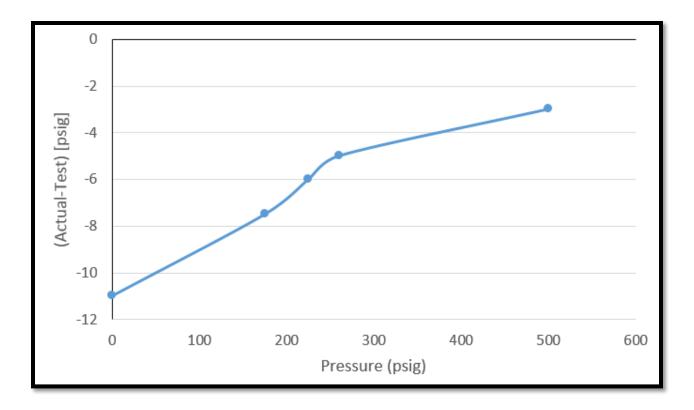


Figure 4-7. As-found test of PIT6

As indicated from the as-found test, the pressure transducer under-reads the actual pressure. For the pressure ranges applicable to the study (i.e. 175, 225 and 260 psig), the drift in transducer's response is, on average, 6 psig below the actual pressure. However, as indicated in the previous sub-sections, the effect of drift in transducer's response with time is unknown. Nevertheless, an external Crystal pressure gauge (provided by SPL) was used during both the winter and summer phase testing weeks, and showed close resemblance with PIT6 and PIT1.

4.7.5 List of related files / documentation

No documentation is available on this pressure transducer.

4.8 <u>PIT7</u>

4.8.1 Description and principle of operation

PIT7 is a pressure transmitter manufactured by Barksdale. It is located at the separator dump leg, downstream of the Coriolis meter. It was used in conjunction with PIT6 to check the pressure drop across the Coriolis meter, therefore indicating whether a two-phase flow existed during active well dumps.

4.8.2 Output specifications

Specification	
Pressure range	0–100 psig
Analog input flow	12–28 VDC
Analog output flow	4–20 mA
Accuracy	±0.25% of measured pressure

Table 4-7: Specifications of PIT7

4.8.3 Summary of calibration procedures

Calibration procedure is proprietary. However, the room sum square root of the linearization, hysteresis and repeatability is computed to produce the transducer's accuracy. In addition, the output at 4 mA and 20 mA is tested and compared with the transducer's pressure range.

4.8.4 Summary of calibration results

Neither calibration certificate nor as-found record exist for this pressure transmitter.

4.8.5 List of related files / documentation

- Manufacturer data sheet
- Manufacturer's installation and maintenance instructions

4.9 <u>PIT8</u>

4.9.1 Description and principle of operation

PIT8 is a pressure transmitter manufactured by Barksdale. It is located at the point where the separator-to-oil tank pipeline comes to the surface (base of up-comer). It measures the oil pressure inside the pipe. This pressure transmitter was used during the summer test period (Figure 3-2) after it was discovered that during active well cycles, the oil pressure exceeded PIT5's pressure ranges.

4.9.2 Output specifications

Table 4-8: Specifications of PIT8

Specification	
Pressure range	0–100 psig
Analog input flow	12–28 VDC
Analog output flow	4–20 mA
Accuracy	± 0.25% of measured pressure

4.9.3 Summary of calibration procedures

See sub-section 4.8.3.

4.9.4 Summary of calibration results

Neither calibration certificate nor as-found record exist for this pressure transmitter.

4.9.5 List of related files / documentation

- Manufacturer data sheet
- Manufacturer's installation and maintenance instructions

4.10 <u>PIT9</u>

4.10.1 Description and principle of operation

PIT9 is a pressure transducer manufactured by Ashcroft. It is located at the separator-to-tank pipe, just prior to entering the tank on the horizontal section. It measures the oil pressure at the top of the tank, a useful measurement for estimating the flow rate of the two-phase oil exiting the siphon hole⁸ located one foot below, as illustrated in Figure 4-8.

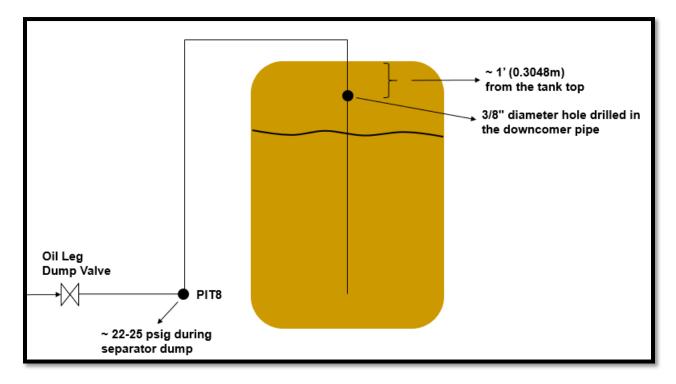


Figure 4-8. Illustration of the siphon hole location within the down-comer

4.10.2 Output specifications

Specification	
Pressure range	0–1.5 psig
Analog input flow	10–30 VDC
Analog output flow	1–5 VDC
Temperature range	(-)4–185°F
Accuracy class	±0.5% of span (total error band)

Table 4-9	: Specifications	of PIT9
-----------	------------------	---------

⁸ The siphon hole is 3/8" in diameter, and is supposed to avoid separator over-fill in case of an upset conditions where the oil flow is reversed from the tank back to the separator.

4.10.3 Summary of calibration procedures

See sub-section 4.3.3.

4.10.4 Summary of calibration results

No calibration certificate exists for this meter.

However, the observed pressure exceeded the transducer's range by one order of magnitude, therefore any pressure readings from this transducer need to be flagged. Nonetheless, the pressure readings are considered (in bulk part) to perform estimate of flow discharge through the siphon hole.

4.10.5 List of related files / documentation

No documentation is available on this transducer.

5.0 Resistance Temperature Detector (RTD)

5.1 <u>Background</u>

A resistance temperature detector (RTD) is a temperature sensor that contains a resistor that changes resistance value as its temperature changes. The majority of the RTD elements consist of a length of fine coiled wire wrapped around a ceramic or glass core that is placed inside a sheathed probe to protect it due to its fragility. The RTD element is made from a pure material whose resistance at various temperatures has been documented [18] (e.g. a platinum RTD has a typical resistance of 100 ohms at 0^oC).

The relationship between an RTD's resistance and the surrounding temperature is highly predictable if the temperature coefficient (denoted as α), it allows an accurate and consistent temperature measurement. Although various manufacturers may specify α differently, it is defined over the temperature span of 0-100°C and is expressed as ohm/ohm/0°C. The formula for determining α is shown in equation (5-1):

$$\alpha = \frac{R_{100} - R_0}{R_0 * 100^0 C} \tag{5-1}$$

Where:

 α is the temperature coefficient (ohms/ohms/°C) R₁₀₀ is the resistance of the RTD at 100°C (ohms) R₀ is the resistance of the RTD at 0°C (ohms)

In order to correct for the departure from linearity at temperatures other than 0-100°C, a curve fitting is required. The Callendar-Van Dusen (CVD) equation (5-2a) is commonly used to approximate the RTD curve for temperatures of the range $-200^{\circ}C \le T \le 0^{\circ}C$, while equation (5-2b) is used for T > 0°C:

$$R_T = R_0 [1 + AT + BT^2 + C(T - 100)T^3]$$
(5-2a)

$$R_T = R_0 [1 + AT + BT^2]$$
(5-2b)

Where:

T is the temperature in °C

 R_T is the resistance of the RTD at temperature "T" (ohms)

A, B, C are coefficients of the CVD equation shown in Table 5-1.

Standard	α (Ω/Ω/°C)	Α	В	C ⁹
DIN 43760	0.003850	3.9080 x 10 ⁻³	-5.8019 x 10 ⁻⁷	-4.2735 x 10 ⁻¹²
American	0.003911	3.9692 x 10 ⁻³	-5.8495 x 10 ⁻⁷	-4.2325 x 10 ⁻¹²
ITS-90	0.003926	3.9848 x 10 ⁻³	-5.870 x 10 ⁻⁷	-4.0000 x 10 ⁻¹²

Table 5-1: Callendar-Van Dusen Coefficients Corresponding to Common RTDs [18]

The CVD constants can be also calculated empirically, as shown in equations [18] (5-3a-c).

$$A = \alpha + \frac{\alpha\delta}{100} \tag{5-3a}$$

$$B = \frac{-\alpha\delta}{100^2} \tag{5-3b}$$

$$C = \frac{-\alpha\beta}{100^4} \tag{5-3c}$$

Where:

 β is obtained by calibration at a negative temperature (e.g. triple point of mercury and argon, or liquid nitrogen), and is determined by the manufacturer if T < 0oC, otherwise it is zero.

 δ is obtained by calibration at a high temperature [19] (e.g. freezing point of zinc or aluminum), and is determined by the manufacturer, or empirically from equation (5-3d):

$$\delta = \frac{R_0(1+\alpha*260) - R_{200}}{4.16*R_0*\alpha}$$
(5-3d)

Where:

 R_{200} is the resistance of the RTD at 200°C

For temperature range of $0^{\circ}C \le T \le 661^{\circ}C$, equation (5-2) is reduced to a quadratic form. Thus, by supplying an RTD with a constant current and measuring the resulting voltage drop across the resistor, the RTD's resistance can be calculated, and the temperature can be determined based on equation (5-4) [18]:

$$T = \frac{2(V_0 - I_{EX}R_0)}{I_{EX}R_0 \left[A + \sqrt{A^2 + 4B \frac{(V_0 - I_{EX}R_0)}{I_{EX}R_0}} \right]}$$
(5-4)

Where:

 V_0 is the measured RTD voltage (VDC) I_{EX} is the excitation current (ampere)

⁹ For temperatures below 0° C only; C = 0.0 for temperatures above 0° C

5.2 <u>RTD1</u>

5.2.1 Description and principle of operation

RTD1 is a 100 ohm platinum RTD manufactured by Thermocouple Technology (TTEC), located within the separator oil layer. RTD1 conforms to the European Curve / DIN 43760 standards, therefore using a temperature coefficient of 0.00385 (See Table 5-1).

5.2.2 Output specifications

Specification	
Temperature range	0–250°F
Analog input flow	12 VDC
Analog output flow	1–5 VDC
Accuracy class	±2°F

Table 5-2: RTD1 Output Specifications

5.2.3 Summary of calibration procedures

Calibration procedure was not provided by manufacturer.

In-situ calibration procedure

The RTD is calibrated with a calibration bath to signal exactly 1 VDC at bottom of range and 5 VDC at top of range. After installation, in order to remove variables from signal resistance, a 1VDC is sent individually through the signal wire to the PLC where LOW_ADC value is compared to RAW_ADC value and adjusted to match RAW_ADC value. Afterwards, a 5VDC is then sent through the signal wire to the PLC where HIGH_ADC value is compared to RAW_ADC value and adjusted to match RAW_ADC value is compared to RAW_ADC value and adjusted to match RAW_ADC value is compared to RAW_ADC value and adjusted to match RAW_ADC value is compared to RAW_ADC value and adjusted to match RAW_ADC value is compared to RAW_ADC value and adjusted to match RAW_ADC value.

5.2.4 Summary of calibration results

No calibration record exists for this RTD.

An in-situ, "as-found" test was performed on RTD1 based on the in-situ calibration procedure discussed in sub-section 5.2.3. The as-found test was performed by varying the voltage between 1 and 5 VDC and recording the output temperature, as shown below in Figure 5-1.

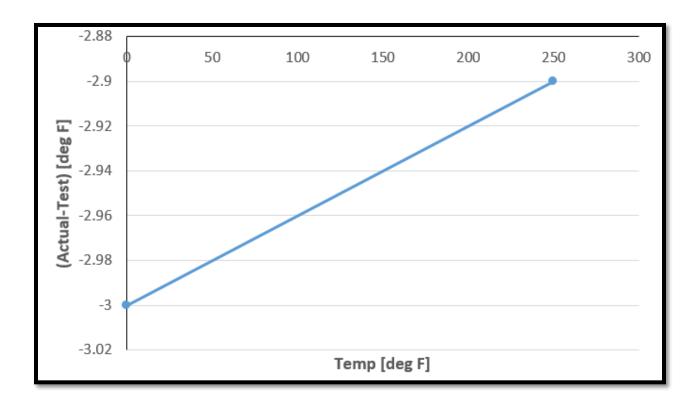


Figure 5-1. As-found test results on RTD1

It is illustrated from Figure 5-1 that the deviation in temperature is almost identical for both the low end of the temperature spectrum (1 VDC, 0°F) and of the high end of the temperature spectrum (5 VDC, 250°F). Since RTD1 may under-read the temperature, it may be suspected as a bias.

5.2.5 List of related files / documentation

No documentation is available on this transducer.

5.3 <u>RTD2</u>

5.3.1 Description and principle of operation

RTD2 is a 100 ohm platinum RTD manufactured by Thermocouple Technology (TTEC), located within the separator gas headspace. RTD2 conforms to the European Curve / DIN 43760 standards, therefore using a temperature coefficient of 0.00385 (See Table 5-1).

5.3.2 Output specifications

Specification	
Temperature range	0–250°F
Analog input flow	12 VDC
Analog output flow	1-5 VDC
Accuracy class	±2°F

5.3.3 Summary of calibration procedures

See sub-section 5.2.3.

5.3.4 Summary of calibration results

No calibration certificate exists for this meter.

An in-situ, "as-found" test was performed on RTD2 based on the in-situ calibration procedure discussed in sub-section 5.2.3. The as-found test was performed by varying the voltage between 1 and 5 VDC and recording the output temperature, as shown below in Figure 5-2.

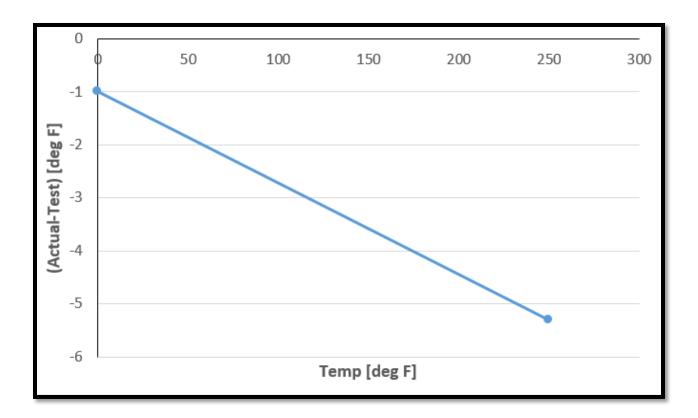


Figure 5-2. As-found test results on RTD2

In contrast to Figure 5-1, it is evident that for RTD2 there is a large drift in the high temperature range of the RTD sensor.

5.3.5 List of related files / documentation

No documentation is available on this transducer.

5.4 <u>RTD3</u>

5.4.1 Description and principle of operation

RTD3 is a 100 ohm platinum RTD manufactured by Thermocouple Technology (TTEC), located at the top of the storage tank. RTD3 conforms to the European Curve / DIN 43760 standards, therefore using a temperature coefficient of 0.00385 (See Table 5-1).

5.4.2 Output specifications

Specification	
Temperature range	(-)25–175°F
Analog input flow	12 VDC
Analog output flow	1–5 VDC
Accuracy class	±2°F

Table 5-4: RTD3 Output Specifications

5.4.3 Summary of calibration procedures

See sub-section 5.2.3.

5.4.4 Summary of calibration results

No calibration certificate exists for this meter.

An in-situ, "as-found" test was performed on RTD3 based on the in-situ calibration procedure discussed in sub-section 5.2.3. The as-found test was performed by varying the voltage between 1 and 5 VDC and recording the output temperature, as shown below in Figure 5-3.

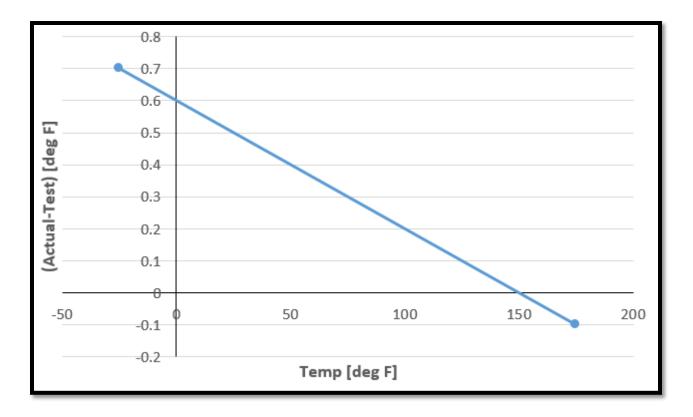


Figure 5-3. As-found test results on RTD3

5.4.5 List of related files / documentation

No documentation is available on this transducer.

5.5 <u>RTD4</u>

5.5.1 Description and principle of operation

RTD4 is a 100 ohm platinum RTD manufactured by Thermocouple Technology (TTEC), located at the separator-to-oil tank pipe, just prior to entering the tank on the horizontal section. RTD4 conforms to the European Curve / DIN 43760 standards, therefore using a temperature coefficient of 0.00385 (See Table 5-1).

5.5.2 Output specifications

Specification	
Temperature range	0–250°F
Analog input flow	12 VDC
Analog output flow	1–5 VDC
Accuracy class	±2°F

Table 5-5: RTD4 Output Specifications

5.5.3 Summary of calibration procedures

See sub-section 5.2.3.

5.5.4 Summary of calibration results

No calibration certificate exists for this meter.

An in-situ, "as-found" test was performed on RTD4 based on the in-situ calibration procedure discussed in sub-section 5.2.3. The as-found test was performed by varying the voltage between 1 and 5 VDC and recording the output temperature, as shown below in Figure 5-4.

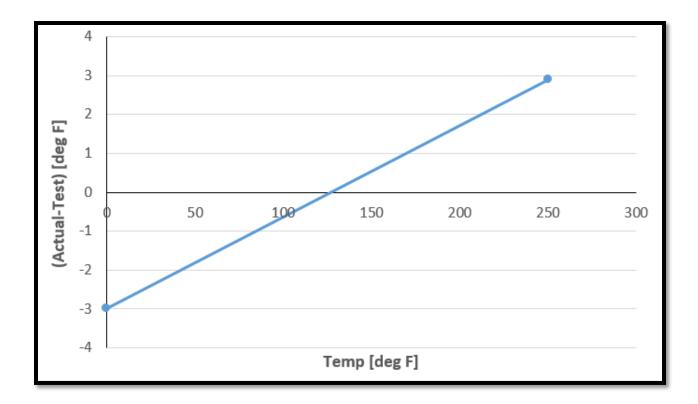


Figure 5-4. As-found test results on RTD4

5.5.5 List of related files / documentation

No documentation is available on this transducer.

5.6 <u>RTD5</u>

5.6.1 Description and principle of operation

A resistance temperature detector (RTD)

5.6.2 Output specifications

Specification	
Temperature range	0-200°F
Analog input flow	< 30 VDC
Analog output flow	4–20 mA
Accuracy class	±2°F

Table 5-6: RTD5 Output Specifications

5.6.3 Summary of calibration procedures

See sub-section 5.2.3.

5.6.4 Summary of calibration results

No calibration certificate exists for this meter.

5.6.5 List of related files / documentation

No documentation is available on this transducer.

5.7 <u>RTD6</u>

5.7.1 Description and principle of operation

A resistance temperature detector (RTD)

5.7.2 Output specifications

Specification	
Temperature range	(-)30–150°F
Analog input flow	9–30 VDC
Analog output flow	1–5 VDC
Accuracy class	±2°F

Table 5-7: RTD6 Output Specifications

5.7.3 Summary of calibration procedures

See sub-section 5.2.3.

5.7.4 Summary of calibration results

No calibration certificate exists for this meter.

An in-situ, "as-found" test was performed on RTD6 based on the in-situ calibration procedure discussed in sub-section 5.2.3. The as-found test was performed by varying the voltage between 1 and 5 VDC and recording the output temperature, as shown below in Figure 5-5.

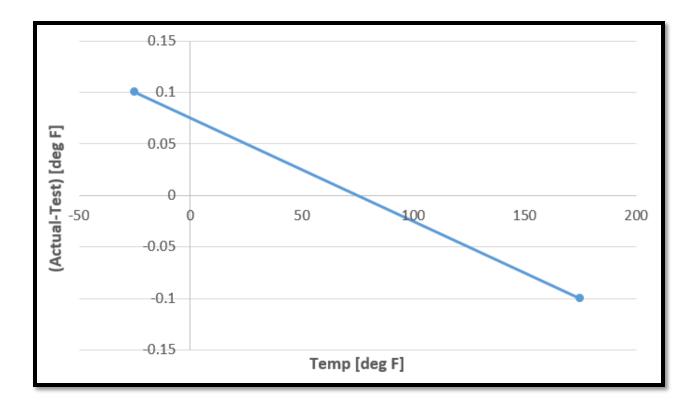


Figure 5-5. As-found test results on RTD6

5.7.5 List of related files / documentation

No documentation is available on this transducer.

5.8 <u>RTD7</u>

5.8.1 Description and principle of operation

A resistance temperature detector (RTD)

5.8.2 Output specifications

Specification	
Temperature range	(-)25–175°F
Analog input flow	12 VDC
Analog output flow	1–5 VDC
Accuracy class	±2°F

Table 5-8: RTD7 Output Specifications

5.8.3 Summary of calibration procedures

See sub-section 5.2.3.

5.8.4 Summary of calibration results

No calibration certificate exists for this meter.

5.8.5 List of related files / documentation

No documentation is available on this transducer.

5.9 <u>RTD16</u>

5.9.1 Description and principle of operation

RTD16 is a 100 ohm platinum RTD manufactured by Thermocouple Technology (TTEC), located at the top of the storage tank. RTD3 conforms to the European Curve / DIN 43760 standards, therefore using a temperature coefficient of 0.00385 (See Table 5-1).

5.9.2 Output specifications

Specification	
Temperature range	(-)25–175°F
Analog input flow	12 VDC
Analog output flow	1–5 VDC
Accuracy class	±2°F

5.9.3 Summary of calibration procedures

See sub-section 5.2.3.

5.9.4 Summary of calibration results

No calibration certificate exists for this meter.

5.9.5 List of related files / documentation

No documentation is available on this transducer.

6.0 References

- [1] VIM International Vocabulary of Metrology Basic and General Concepts and Associated Terms (VIM) JCGM 200:2008
- [2] MPMS, API. Chapter 13.1., Manual of Petroleum Measurement Standards Chapter 13 – Statistical Aspects of Measuring and Sampling, Section 1 – Statistical Concepts and Procedures in Measurement, American Petroleum Institute, API Publishing Services, 1220L Street, N.W., Washington, DC; 20005, November 1985, Reaffirmed February 2011
- [3] Micro Motion F-Series Flow and Density Meters. Product Data Sheet. PS-00603, Rev. X. September 2016.
- [4] Micro Motion Calibration Procedure. Internal Document. Document was sent by Emerson on September 21, 2016.
- [5] MPMS, API. Chapter 11.1., Manual of petroleum measurement standards Chapter 11 – Physical Properties Data, Section 1 - Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils. American Petroleum Institute, API Publishing Services, 1220L Street, N.W., Washington, DC; 20005, May 2004, Reaffirmed August 2012.
- [6] MPMS, API. Chapter 13.1., Manual of Petroleum Measurement Standards Chapter 13 – Statistical Aspects of Measuring and Sampling, Section 3 – Measurement Uncertainty, API Publishing Services, 1220L Street, N.W., Washington, DC; 20005, May 2016
- [7] Fox Thermal Mass Gas Flowmeters Theory of Operation. Rev. C
- [8] Thomas, C.C., "The Measurement of Gases," Journal of the Franklin Institute, November 1911.
- [9] Calibration Lab Capabilities. Internal Document. Publicly available from: https://foxthermalinstruments.com/literature/pdf/brochures/cal-lab-capabilities.pdf
- [10] Model FT3 Thermal Gas Mass Flow Meter and Temperature Transmitter. Product Brochure. Publicly available from: <u>https://foxthermalinstruments.com/products/pdf/ft3/ft3-brochure.pdf</u>
- [11] Image taken copied from Hontzsch's website: http://www.hoentzsch.com/en/products/detail/p/1-sonde-zs25-zg4/

- [12] EAL-R2) Expression of the Uncertainty of Measurement in Calibration requirements document, 1996, European cooperation for Accreditation of Laboratories (Utrecht, The Netherlands).
- [13] Fox Calibration Systems: Uncertainty and Process Analysis. Document was sent by Fox Thermal Instruments on October 31, 2016.
- [14] Flow Measurement User Manual. Form Number A6043, Part Number D301224X012, March 2015. Emerson Process Management. Available online from: <u>http://www.documentation.emersonprocess.com/groups/public/documents/instruction_manuals/d301224x012.pdf</u>
- [15] ISO 9847:1992(E), Solar Energy Calibration of Field Pyranometers by Comparison to a Reference Pyranometer, International Organization for Standardization, Case Postale 56, 1211 Genève, Switzerland.
- [16] User Manual SR05 Digital second class pyranometer. Manual v1610. Hukseflux. Available online from: <u>http://www.hukseflux.com/sites/default/files/product_manual/SR05_manual_v1610.pdf</u>
- [17] Pressure Transducers: Introduction to Pressure Transducers and Transmitters. Omega. Publicly available from the following: <u>http://www.omega.com/prodinfo/pressuretransducers.html</u>
- [18] Measuring Temperature with RTDs A Tutorial. Application Note 046, Form Number 340557B-01. National Instruments Corporation. November 1996. Available online from: <u>https://newton.ex.ac.uk/teaching/CDHW/Sensors/an046.pdf</u>
- [19] Standard Callendar-Van Dusen. Available online from: http://www.sensingdevices.com/cvd-table.php

7200 E. Dry Creek Rd. C-102 Centennial, Co. 80112 303-804-0667 cal.lab@apex-instruments.com

Automation X 2881 S. 31st Ave, #21 Greeley, CO 80631

Page 1

CALIBRATION CERTIFICATE: 9691-HP

DUT

Feb 19 2016

Device Informaton: Model Manufacturer Serial Number

Pressure Range Tolerance Data Aquisition Mode Date of Calibration Calibration Due

Test Information - 3000 psi Test Lable Feb 19 2016 Date 9:0:42 AM Time Steven L APEX-HP2-HP Operator Station ID

psi 0.00002

a

psi 0.000

psi 0.000

IS33 Crystal Engineering 2262-340160 0.000 to 3000.000 0.005 %Span + 0.05 %Rdg

RS232

Feb 19 2016

Feb 19 2017

3270005 30, 300, 1000, 3000 psi +/- 0.003% span or 0.01% Rdg RS232 Sep 10 2015

Reference

6270A

Fluke

Sep 10 2016

Conditions Ambient Pressure Ambient Temperature Ambient Relative Humidity

Web Street and

36

0.0000

23 deg C +/- 3 C 20% - 60%

Cintur

Pass

DUT

psi 0.150

As Received Data:

Test Point	Reference	DUT	DUT Raw	Abs. Error	"% Span"	DUT	Status	
5.5.5.5.5.5.0.00	Pressure	Pressure	Output		Error	Tolerance		
	psi	psi	psi	psi	%	psi		
	0.00002	0.000	0.000	0.000	0.0000	0.150	Pass	
2	600.00025	599.911	599.911	-0.089	-0.0030	0.450	Pass	
3	1199,99842	1199.941	1199.941	-0.057	-0.0019	0.750	Pass	
4	1800.00005	1799.900	1799.900	-0.100	-0.0033	1.050	Pass	
5	2399.99853	2399.840	2399.840	-0.159	-0.0053	1.350	Pass	
6	2999.99755	2999.839	2999.839	-0.159	-0.0053	1.650	Pass	
7	2400.00117	2399.900	2399.900	-0.101	-0.0034	1.350	Pass	
8	1800.00042	1799.971	1799.971	-0.029	-0.0010	1.050	Pass	
9	1199.99960	1200.040	1200.040	0.040	0.0013	0.750	Pass	
10	599.99831	600.011	600.011	0.013	0.0004	0.450	Pass	
11	-0.00001	0.006	0.006	0.006	0.0002	0.150	Pass	
As Received Fir	st Order Fit: y = '	1.000052E00x +	-1.374852E-02					
As Left Da	ta:							
Test Point	Reference	DUT	DUT Raw	Abs. Error	"% Span"	DUT	Status	
Test Point	Pressure	Pressure	Output	a teres her ter	Error	Tolerance	1.01122	

- 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000

Crystal Certification Calibrating Total Flow DP and SP

psi 0.000

1	_		Therm	o Pro	be	R	Report	of Te	st			1	/					Report of	f Test
eport	1	204	5-11-18			1		calibrate		t the instrur ermoProbe			644-06. Th the actual	is probe w test tempe	as immersed in a o rature. The reading	onstant temper gs were compar	ermoProbe, Inc. Calibn ature bath with a refer red and correction fact	ence thermomete	r which determi
lodel:		TL1-A	5-11-18	- 1-156	58			l	Jnit SN:	1-15668		ж. 1	As Left rea		ct the TL's readings Bath	after calibratio	Reference	Calibration Date	Next Calibratio
										11/18/20 75 °F			(+)20.0° C	(-)4.0° F	Fluke 7340	water/glycol	71.2-0029	4/15/2015	Due 4/15/2016
- 101-		Dete	A						ated By:				0.0° C	32.0° F	Fluke 7340	water/glycol	TL2-0016	4/15/2015	4/15/2016
			As For										48.9° C	120.0° F	PolyScience 8101	mineral oil	TL2 - 0008	4/15/2015	4/15/2016
													92.8° C	199.0° F	Fluke 6330	mineral oil	Flake 1502A + ASP WSP500	4/15/2015	4/15/2016
													149.0° C	300.2° F	Fluke 6330	silicon oil	Fluke 1502A - ASP WSP500	4/15/2015	4/15/2016
allt	natio -	Data	As Lef										290.0° C	554.0' F	PolyScience 8102	metrology well	TL2A-0053	8/18/2015	8/18/2016
199	49 93	120.003 199.036	48.897 92.798	120.01 199.04	48.89 92.80	-0.01 0.00	0.00	0.10	0.06	Yes Yes	0.030	0.017	it to meas	ure temp	eratures signific		ake care to protect he highest calibrate		
*F 32 120	°C Ø	°F 32.010	*C 0.006	° F 32.03	°C 0.02	° F -0.02	°C -0.01	• F 0.10	°C 0.06	Yes	° F 0.030 0.030	°C 0.057 0.017	possible c	amage to	the TL from sh	ipping, temp	ty (k=2). It does no erature drift, or the	mal hysteresis	effect. To
													it to meas	ure temp	eratures signific				
300	149	300.202	149.001	300.21	149.01	-0.01	0.00	0.10	0.06	Yes	0.030	0,017	TL recalib			1	11		
-	-												Calibrator	s Signat	ure:	4 ×	lace	~	
							_								N	r			
_	-												Test Resu	Its Appro	oved by:	L.C.			
	Callendar	100.00		3.91400E-	03	8	-8.03510	-07	C	-4.17100E-1	1								
	Callendar R0												Date:	11/18/201		is report rela	te only to the items	specifically ide	otified

Thermoprobe Certification for Calibrating Total Flow Temp

Orifice Meter Test Report

Meter: 0000001	- Bern	nhart 31-32			Date Performe	ed: February 26, 20	16 10:20 Rev 1
company:		City:		State ID:		User Defined 1:	
ivision:		County:	Weld	Federal ID:		User Defined 2:	
rea:		State:	Colorado	API Code:		User Defined 3:	
ub-Area:		Agency:		Latitude:		User Defined 4:	
sst Test: 02/26/2016	Reaso	on for Test:	Calibration	Longitude:		Site Elevation:	
	Flowing Condit	lons			Meter	Constants	
	Found	Left	Average	Calculation Method:	AGA3-1992	FPV Method:	AGA8-Detail
)ifferential:	0.00	34.04	25.00	PSIA/PSIG:	PSIA	Measured HV:	1261.00000
ressure:	150.18	166.18	160.00	Atmos. Press.:	12.30	Specific Gravity:	0.75200
emperature:	54.73	66.30	50.00	Pressure Base:	14.73	N2:	0.21060
TU Flow Rate:	0.00	726.21		Temp. Base:	60	CO2:	2.30060
ound:							
leter Time:							
	Meter Inspect	lon					
rimBrand: Daniels I	Model: Junior		ŧ; C100530.001				
	Model: XFC G4		#: T121881581				
P Range: 0-250	Model: XFC G4	Ser#	¥:		DP C	Calibration	
P Range: 0-500	Model: XFC G4	Ser #	.	Standard	Found	Left	Flow Rate Error
mp Range: 0-150	Model: XFC G4	Ser#	#:	Reset A.P.0	-0.01		
				Reset W.P.0	0.00	-0.02	
tatic Location: Upstream	m	Тар Тур	e: Flange	0.00	-0.01	0.00	
ak Test:		Zero Cuto	ff: 0.50	125.00	124.97	125.01	-0.01 %
	-			250.00	249.94	250.03	-0.01 _%
lata Siza Eviatina:	Orifice Plate						
Iste Size Existing:	1.250 0	Drifice Serial:					
late Size Found:	1.250 C	Drifice Serial:					
late Size Found:	1.250 C	Drifice Serial:					
iste Size Found:	1.250 C	Drifice Serial:	Yes Oily Yes	Atmos Prass Source		alibration	12.30
lste Size Found: leter Tube Size Existi Plate Inspected: Yes Plat	1.250 0 1.250 Sea 2.069 ter Tul	Drifice Serial: al Inspection: be Size Left:		Atmos. Press. Source	: Fixed	Obs. Atmos. Press:	12.30
lste Size Found: leter Tube Size Existi Plate Inspected: Yes Plat	1.250 0 1.250 Sea 2.069 ter Tul te Clean <u>No</u>	Drifice Serial: al Inspection: be Size Left: Edge Sharp_`	No Dirty Yes	Standard (PSIG)	: <u>Fixed</u> Found (PSIA)	Obs. Atmos. Press: Left (PSIA)	Flow Rate Error
lste Size Found: leter Tube Size Existi Plate Inspected: Yes Plat	<u>1.250</u> C <u>1.250</u> Sea <u>2.069</u> ter Tul te Clean <u>No</u> Smooth <u>No</u>	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat	No Dirty Yes No Rough No	Standard (PSIG) 0.00	Fixed Found (PSIA) 12.41	Obs. Atmos. Press: Left (PSIA) 12.31	Flow Rate Error 0.45%
iste Size Found: eter Tube Size Existi liste Inspected: <u>Yes</u> Plat	1.250 C 1.250 Sea 2.069 ter Tur te Clean No Smooth No Bevel No Bowed No	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat_ Beveled DS_	No Dirty Yes No Rough No	Standard (PSIG) 0.00 250.00	Found (PSIA) 12.41 262.56	Obs. Atmos. Press: Left (PSIA) 12.31 262.30	Flow Rate Error 0.45% 0.05%
iste Size Found: eter Tube Size Existi Plate Inspected: Yes Plat iste Changed: <u>No</u> Ner	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bevel No	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat_ Beveled DS_	No Dirty Yes No Rough No	Standard (PSIG) 0.00	Fixed Found (PSIA) 12.41	Obs. Atmos. Press: Left (PSIA) 12.31	Flow Rate Error 0.45%
iste Size Found: eter Tube Size Existi Plate Inspected: Yes Plat iste Changed: <u>No</u> Ner	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat_ Beveled DS_	No Dirty Yes No Rough No	Standard (PSIG) 0.00 250.00	Found (PSIA) 12.41 262.56	Obs. Atmos. Press: Left (PSIA) 12.31 262.30	Flow Rate Error 0.45% 0.05%
iste Size Found: eter Tube Size Existi Plate Inspected: Yes Plat iste Changed: <u>No</u> Ner	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSIG) 0.00 250.00	Found (PSIA) 12.41 262.56 512.36	Obs. Atmos. Press: Left (PSIA) 12.31 262.30	Flow Rate Error 0.45% 0.05%
iste Size Found: eter Tube Size Existi Plate Inspected: Yes Plat iste Changed: <u>No</u> Ner	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSiG) 0.00 250.00 500.00 Standard	Found (PSIA) 12.41 262.56 512.36 Temperat Found	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Callbration Left	Flow Rate Error 0.45% 0.05% 0.01% Flow Rate Error
iste Size Found: eter Tube Size Existi Plate Inspected: Yes Plat iste Changed: <u>No</u> Ner	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSIG) 0.00 250.00 500.00	: <u>Fixed</u> Found (PSIA) <u>12.41</u> <u>262.56</u> <u>512.36</u> 	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Calibration	Flow Rate Error 0.45% 0.05%
Iste Size Found: Ieter Tube Size Existi Piste Inspected: Yes Plat Iste Changed: <u>No</u> Ner	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSiG) 0.00 250.00 500.00 Standard	Found (PSIA) 12.41 262.56 512.36 Temperat Found	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Callbration Left	Flow Rate Error 0.45% 0.05% 0.01%
iste Size Found: eter Tube Size Existi fiste Inspected: <u>Yes</u> Plat ste Changed: <u>No</u> Ner	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSiG) 0.00 250.00 500.00 Standard	Found (PSIA) 12.41 262.56 512.36 Temperat Found	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Calibration Left 56.00	Flow Rate Error 0.45% 0.05% 0.01% Flow Rate Error
late Size Found: leter Tube Size Existi Plate Inspected: <u>Yes</u> Plat late Changed: <u>No</u> Ner Pla Etemarks:	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSiG) 0.00 250.00 500.00 Standard	Found (PSIA) 12.41 262.56 512.36 Temperat Found	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Callbration Left	Flow Rate Error 0.45% 0.05% 0.01% Flow Rate Error
late Size Found: leter Tube Size Existi ¹ late Inspected: <u>Yes</u> Plat late Changed: <u>No</u> Ner Pla Pla Calibrated SP	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSiG) 0.00 250.00 500.00 Standard	Found (PSIA) 12.41 262.56 512.36 Temperat Found	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Calibration Left 56.00	Flow Rate Error 0.45% 0.05% 0.01% Flow Rate Error
late Size Found: leter Tube Size Existi "Iste Inspected: Yes Plat liste Changed: <u>No</u> Ner Pla Calibrated SP Calibrated SP Calibrated DP	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSiG) 0.00 250.00 500.00 Standard	Found (PSIA) 12.41 262.56 512.36 Temperat Found	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Calibration Left 56.00	Flow Rate Error 0.45% 0.05% 0.01% Flow Rate Erro
late Size Found: leter Tube Size Existi ² late Inspected: <u>Yes</u> Plat late Changed: <u>No</u> Ner Pla Pla <u>Remarks:</u> Calibrated SP	1.250 C 1.250 Sea 2.069 ter Tul te Clean No Smooth No Bowed No W Plate Serial:	Drifice Serial: al Inspection: be Size Left: Edge Sharp Surface Flat Beveled DS	No Dirty Yes No Rough No	Standard (PSiG) 0.00 250.00 500.00 Standard	: <u>Fixed</u> Found (PSIA) 12.41 262.56 512.36 	Obs. Atmos. Press: Left (PSIA) 12.31 262.30 512.13 ure Calibration Left 56.00	Flow Rate Error 0.45% 0.05% 0.01% Flow Rate Error

Test It Report Total Flow Calibration Documentation

FLOW METER CALIBRATION CERTIFICATE

Serial #:	21773	Dia. =	3.068	in
Model #:	FT3-18R	Area =	0.0513379	Ft^2
Fluid Type:	20.89% CH4, 18.16% C2H6, 16.52% C3H8, 17.99% C4H10, 15.49% C5H12, 2	2.63% C6H14, 1.	85% C7H16, 1.3	2% CO2, et al.

STP: 60 F, 14.73 psia 4 mA = 0 MSCFD	
IDTag: - 20 mA = 500.00 MSCFD	

Curve 2

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
	0.29208	0.00	0.00
2	0.31595	341.27	1.45
3	0.34680	651.22	2.78
4	0.38240	1409.38	6.01
5	0.39980	2059.42	8.78
3 4 5 6 7	0.42058	3043.10	12.97
7	0.44783	4771.99	20.34
8	0.47022	6602.29	28.15
8 9	0.48841	8362.92	35.65
10	0.50701	10581.30	45.11
11	0.52915	13701.29	58.41
12	0.54871	16803.46	71.63
13	0.56416	19971.47	85.14
14	0.58204	23777.46	101.37
15	0.59446	26554.77	113.21
16	0.63171	36360.68	155.01
17	0.67714	52418.20	223.46
18	0.72152	70628.48	301.10
19	0.75849	90707.97	386.70
20	0.81519	117529.30	501.04

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

	Approved By: Octavio Avila			Cal Date: 2/23/2016 10:04	
211 MARSON DATEMANNA		Calibration Standards			0404949193149
	Description	Inst. ID #		Due Date	
	Meter DVM	FOX A009		10/06/2016	
	Ref1 DVM	FOX A0121	10	10/06/2016	
	Pressure transducer	PRESS-007		08/06/2016	
	Thermometer	TEMP-SYS-001		10/07/2016	
	Therm Flowmeter	2135		12/11/2016	

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

6

FLOW METER CALIBRATION CERTIFICATE

FLOW METER CALIBRATION CERTIFICATE					
Serial #:	21773	Dia. =	3.068	in	
Model #:	FT3-18R	Area =	0.0513379	Ft^2	
Fluid Type:	32.43% CH4, 25.81% C2H6, 18.17% C3H8, 12.39%	C4H10, 6.51% C5H12, 1.98% CO2, et c	al.		
STP:	60 F, 14.73 psia	4 mA =	0	MSCFD	
IDTag:	18	20 mA =	500.00	MSCFD	

ata Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
1	0.28017	0.00	0.00
2	0.32885	354.78	1.51
2 3	0.35290	690.55	2.94
	0.38273	1436.51	6.12
5	0.39977	2168.65	9.25
6	0.42200	3153.77	13.44
7	0.44582	4632.18	19.75
4 5 7 8 9	0.46787	6554.38	27.94
9	0.48560	8471.47	36.11
10	0.50338	10746.84	45.81
11	0.52672	13651.86	58.20
12	0.54271	17065.97	72.75
13	0.55720	20008.41	85.30
14	0.57476	23673.33	100.92
15	0.59194	26798.56	114.25
16	0.62213	37159.18	158.41
17	0.67087	54703.91	233.21
18	0.70071	68748.61	293.08
19	0.73779	89843.52	383.01
20	0.76997	117554.28	501.15

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/-0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved	Bv: Octavio Avila			Cal Date:	2/23/2016 8:58	
		Calibration Standards				
De	scription	Inst. ID #		Du	e Date	
N	leter DVM	FOX A009		10/	06/2016	
F	Ref1 DVM	FOX A0121	35	10/	06/2016	
Press	ure transducer	PRESS-007		08/	06/2016	
Th	ermometer	TEMP-SYS-001		10/	07/2016	
Ther	m Flowmeter	2135		12/	11/2016	

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

MARINA, CA 93933 USA PHONE: 831-384-4300 FAX: 831-384-4312

FOX THERMAL INSTRUMENTS IS ISO 9001 CERTIFIED

CAL-VTM CERTIFICATE CALIBRATION VALIDATION

CAL-V™ Performed on:	February 25 2016	16:54:20	CAL-V [™] Results:	PASS	
Firmware Version:	FT3 V3.11		CAL-V [™] Value:	21.8	
Fox Meter Serial Number:	21773		CAL-V™ Verify:	4.05%	
Tag #/Meter location:	21773				
Test performed by:	Cody Winberg				
Additional Comments:	Middle Fox Thermal				

Calibration Table Stored in Flow Meter

Compare the below Calibration Table to the original Calibration Certificate

Data Point	Input Volts	NMPH at 0 C 760 mmHg
1	0.28017	0.00
2	0.32885	354.78
3	0.35290	690.55
4	0.38273	1436.51
5	0.39977	2168.65
6	0.42200	3153.77
7	0.44582	4632.18
8	0.46442	6145.22
9	0.48560	8471.47
10	0.50338	10746.84
11	0.52672	13651.86
12	0.54271	17065.97
13	0.55720	20008.41
14	0.57476	23673.33
15	0.59194	26798.56
16	0.62213	37159.18
17	0.67087	54703.91
18	0.70071	68748.61
19	0.73779	89843.52
20	0.76997	117554.30

CAL-V™ is an in-situ calibration routine that validates the flow meter's calibration accuracy by testing the functionality of the sensor and its associated signal processing circuitry.

At the conclusion of the test, the meter will display a pass/fail message and the CAL-V[™] data.

A "pass" result confirms the meter is measuring accurately.

1. The CAL-VTM test is valid for checking the calibration accuracy of flow meters installed in the application for which it was calibrated, including the gas/gas mixture, calibration range and pipe size shown on the Calibration Certificate. 2. For applications with temperature exceeding 250°F (121°C), CAL-V™ test results may vary.

Fox Flow Meter 21773 Certification Documentation, Pre-Winter Testing

FLOW METER CALIBRATION CERTIFICATE

Serial #:	21775	Dia. =	3.068	in
Model #:	FT3-18R	Area =	0.0513379	Ft^2
Fluid Type:	20.89% CH4, 18.16% C2H6, 16.52% C3H8, 17.99% C4H10, 15.49% C5H12,	2.63% C6H14, 1	.85% C7H16, 1.3	2% CO2, et al.
STP:	60 F, 14.73 psia	4 mA =	0	MSCFD
IDT		20 mA =	500.00	MSCFD

IDTag:

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
]	0.28430	0.00	0.00
2	0.31238	359.44	1.53
2	0.35289	744.89	3.18
	0.37780	1386.57	5.91
4	0.39517	2093.77	8.93
	0.41648	3050.97	13.01
6	0.43739	4278.50	18.24
8	0.46593	6591.17	28.10
8	0.48435	8370.50	35.68
10	0.50246	10605.27	45.21
11	0.52497	13676.75	58.31
12	0.54697	17139.31	73.07
13	0.56197	20204.12	86.13
14	0,57635	23678.74	100.95
15	0.59038	26924.54	114.78
16	0.62776	36047.90	153.68
17	0.67590	52495.28	223.79
18	0.71660	70126.07	298.96
19	0.75506	89572.62	381.86
20	0.80352	118364.75	504.60

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

	Approved By: Octavio Avila			Cal Date:	2/22/2016 15:56	
111 2012 2012 2012 2013 2014 2014 2014 2014 2014 2014 2014 2014		Calibration Standards	anapara ana a		on reaction and a second s	ana antara sita de anto a cana a
	Description	Inst. ID #		Du	e Date	
	Meter DVM	FOX A009		10	/06/2016	
	Ref1 DVM	FOX A0121	. e	10	/06/2016	
	Pressure transducer	PRESS-007		08	/06/2016	
	Thermometer	TEMP-SYS-001		10	/07/2016	
	Therm Flowmeter	2135		12	/11/2016	

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

FLOW METER CALIBRATION CERTIFICATE

	•				
Serial #:	21775		Dia. =	3.068	in
Model #:	FT3-18R		Area =	0.0513379	Ft^2
Fluid Type:	Custom	X			
	32.43% CH4, 25.81% C2H6, 18	3.17% C3H8, 12.39% C4H10, 6.51% C5	H12, 1.98% CO2, et al.		
STP:	60 F, 14.73 psia		4 mA =	0	MSCFD
IDTag:	-		20 mA =	500.00	MSCFD

Curve 1

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at ST
1	0.30134	0.00	0.00
2	0.31387	358.06	1.53
3	0.34322	672.74	2.87
4	0.37469	1419.33	6.05
4 5	0.39900	2321.25	9.90
6	0.41589	3059.22	13.04
7	0.44029	4508.14	19.22
8 9	0.46231	6386.19	27.23
9	0.47947	8237.14	35.12
10	0.49716	10472.63	44.65
11	0.52055	13709.28	58.44
12	0.53799	17092.68	72.87
13	0.55243	19960.94	85.10
14	0.56917	23606.45	100.64
15	0.58428	27364.50	116.66
16	0.61203	35898.55	153.04
17	0.65934	52814.23	225.15
18	0.69945	70303.82	299.71
19	0.72635	86878.24	370.37
20	0.77338	117733.63	501.91

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved Bv: Octavio Avila		Cal Date:	2/22/2016 14:48
	Calibration Standards		
Description	Inst. ID #		Due Date
Meter DVM	FOX A009		10/06/2016
Ref1 DVM	FOX A0121	18 C	10/06/2016
Pressure transducer	PRESS-007		08/06/2016
Thermometer	TEMP-SYS-001		10/07/2016
Therm Flowmeter	2135		12/11/2016
	2100		

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

FOX THERMAL INSTRUMENTS IS ISO 9001 CERTIFIED

CAL-V TM CERTIFICATE					
CALIBRATION VALIDATION					
CAL-V [™] Performed on:	February 25 2016	17:03:49	CAL-V [™] Results:	PASS	
Firmware Version:	FT3 V3.11		CAL-V™ Value:	22.81	
Fox Meter Serial Number:	21775		CAL-V™ Verify:	0.01%	
Tag #/Meter location:	21775				
Test performed by:	Cody Winberg				
Additional Comments:	Highest Fox Thermal				

Calibration Table Stored in Flow Meter

Compare the below Calibration Table to the original Calibration Certificate

Data Point	Input Volts	NMPH at 0 C 760 mmHg
1	0.30134	0.00
2	0.31387	358.06
3	0.34322	672.75
4	0.37469	1419.33
5	0.39900	2321.25
6	0.41589	3059.22
7	0.44029	4508.14
8	0.46231	6386.19
9	0.47947	8237.14
10	0.49716	10472.63
11	0.52055	13709.28
12	0.53799	17092.68
13	0.55243	19960.94
14	0.56917	23606.45
15	0.58428	27364.50
16	0.61203	35898.55
17	0.65934	52814.24
18	0.69945	70303.82
19	0.72635	86878.24
20	0.77338	117733.60

CAL-V™ is an in-situ calibration routine that validates the flow meter's calibration accuracy by testing the functionality of the sensor and its associated signal processing circuitry.

At the conclusion of the test, the meter will display a pass/fail message and the CAL-V™ data.

A "pass" result confirms the meter is measuring accurately.

1. The CAL-VTM test is valid for checking the calibration accuracy of flow meters installed in the application for which it was calibrated, including the gas/gas mixture, calibration range and pipe size shown on the Calibration Certificate. 2. For applications with temperature exceeding 250°F (121°C), CAL-V™ test results may vary.

Fox Flow Meter 21775 Certification Documentation, Pre-Winter Testing

THERMAL I	AASS FLOW METERS		MARINA, PHONE: FAX: oxthermaling	VATION ROAL CA 93933 US/ 831-384-430 831-384-431 truments.con
Serial #:	21776	Dia. =	3.068	in
Model #:	FT3-18R	Area =	0.0513379	Ft^2
Fluid Type:	20.89% CH4, 18.16% C2H6, 16.52% C3H8, 17.99	% C4H10, 15.49% C5H12, 2.63% C6H14,	1.85% C7H16, 1.	32% CO2, et al.

STP:

14

IDTag:

60 F, 14.73 psia 4 mA = 0 MSCFD 20 mA = 500.00 MSCFD

CURVE #2

	Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
0.0	1	0.24167	0.00	0.00
	2	0.31024	354.49	1.51
	3	0.34274	704.73	3.00
	4	0.37016	1367.35	5.83
	5	0.38913	2085.69	8.89
	6	0.41190	3056.25	13.03
	7	0.43537	4425.56	18.87
	8	0.46017	6268.45	26.72
	9	0.48454	8630.13	36.79
	10	0.50280	10696.79	45.60
	11	0.52490	13551.34	57.77
	12	0.54688	16922.84	72.14
	13	0.56388	20045.33	85.46
	14	0.58215	23559.30	100.44
	15	0.59510	26738.73	113,99
	11	0.63196	36180.04	154.24
	17	0.67660	51580.91	219,90
	18	0.72560	70070.96	298.72
	19	0.76541	90640.58	386.41
	20	0.81299	118131.44	503.61

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved By: Octavio Avila			Cal Date:	2/22/2016 9:43
	Calibration Standards	ini dagan ti biyan bi		
Description	Inst. ID #		Du	e Date
Meter DVM	FOX A009		10	/06/2016
Ref1 DVM	FOX A0121	Зř	10	/06/2016
Pressure transducer	PRESS-007		08	/06/2016
Thermometer	TEMP-SYS-001		10	/07/2016
Therm Flowmeter	2135		12	/11/2016

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

399 RESERVATION ROAD MARINA, CA 93933 USA PHONE: 831-384-4300 FAX: 831-384-4302 Sales@foxthermalinstruments.com

www.foxthermalinstruments.com

	FLOW METER CALIBRATION CERTIFICATE				
Serial #:	21776	Dia. =	3.068	in	
Model #:	FT3-18R	Area =	0.0513379	Ft^2	
Fluid Type:	26.25% CH4, 22.05% C2H6, 18.19% C3H8, 15.96% C4	4H10, 10.64% C5H12, 1.45% C6H14,	1.63% CO2, et c	al.	
STP:	60 F, 14.73 psia	4 mA =	0	MSCFD	28. 2
IDTag:	34	20 mA =	500.00	MSCFD	

CURVE #3 (data only not installed on meter)

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at ST
1	0.24265	0.00	0.00
2	0.31321	332.05	1.42
2 3	0.34452	699.90	2.98
	0.37666	1416.74	6.04
4 5 6 7 8 9	0.39232	2023.77	8.63
6	0.41797	3133.14	13.36
7	0.43920	4467.50	19.05
8	0.46380	6328.54	26.98
9	0.48009	8117.45	34.61
10	0.50128	10517.43	44.84
11	0.52387	13758.16	58.65
12	0.54394	16740.18	71.37
13	0.56081	19895.07	84.81
14	0.57444	23573.91	100.50
15	0.59333	27454.67	117.04
16	0.62496	36550.09	155.82
17	0.66858	51953.37	221.48
18	0.70878	69970.88	298.29
19	0.74904	91525.16	390.18
20	0.79236	117882.04	502.54

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved By: Octavio Avila		c	Cal Date:	2/22/2016 9:44	
	Calibration Standards	100 MARK 200 MILLER		ana mina ana amin'ny kaodim-dia mampika dia mampika dia mampika dia mampika dia mampika dia mampika dia mampika	9964338779912745429199)
Description	Inst. ID #		Du	e Date	
Meter DVM	FOX A009		10	/06/2016	
Ref1 DVM	FOX A0121	3¥	10	/06/2016	
Pressure transducer	PRESS-007		08	/06/2016	
Thermometer	TEMP-SYS-001		10	/07/2016	
Therm Flowmeter	2135		12	/11/2016	

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

Fox is 180	ASS FLOW METERS			MARINA, PHONE FAX: foxthermalin	VATION ROAL CA 93933 USA 831-384-4300 831-384-4313 struments.com
		FLOW METER CAL	IBRATION CERTIFICATE		- 1991 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993
Serial #:	21776		Dia. =	3.068	in
Model #:	FT3-18R		Area =	0.0513379	Ft^2
Fluid Type:	32.43% CH4, 25.81% C2	H6, 18.17% C3H8, 12.39%	C4H10, 6.51% C5H12, 1.98% CO2, e	et al.	
STP:	60 F, 14.73 psia		4 mA =	0	MSCFD
IDTag:			20 mA =	500.00	MSCFD
		CURVE #1			
	Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at S	TP
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.24594 0.30973 0.34114 0.37186 0.38804 0.41072 0.43504 0.45752 0.47453 0.47398 0.51585 0.53645 0.55185 0.53645 0.55197 0.59094 0.62026 0.66113 0.69811	0.00 335.67 688.36 1386.33 2072.60 3034.09 4428.54 6364.54 8150.92 10534.52 13467.07 16817.01 20041.29 23495.03 27004.66 36767.85 51776.19 70148.38	0.00 1.43 2.93 5.91 8.84 12.93 18.88 27.13 34.75 44.91 57.41 71.69 85.44 100.16 115.12 156.75 220.73 299.05	

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

	Calibration Standards		
Description	Inst. ID #		Due Date
Meter DVM	FOX A009		10/06/2016
Ref1 DVM	FOX A0121	<i>x</i> .	10/06/2016
Pressure transducer	PRESS-007		08/06/2016
Thermometer	TEMP-SYS-001		10/07/2016
Therm Flowmeter	2135		12/11/2016

FOX THERMAL INSTRUMENTS IS ISO 9001 CERTIFIED

CAL-V TM CERTIFICATE					
	CALIBRA	TION V	ALIDATION		
CAL-V [™] Performed on:	February 25 2016	16:46:06	CAL-V [™] Results:	PASS	
Firmware Version:	FT3 V3.11		CAL-V™ Value:	22.84	
Fox Meter Serial Number:	21776		CAL-V™ Verify:	3.15%	
Tag #/Meter location:	21776				
Test performed by:	Cody Winberg				
Additional Comments:	Lowest Fox Thermal				

Calibration Table Stored in Flow Meter

Compare the below Calibration Table to the original Calibration Certificate

Data Point	Input Volts	NMPH at 0 C 760 mmHg
1	0.24594	0.00
2	0.30973	335.67
3	0.34114	688.36
4	0.37186	1386.33
5	0.38804	2072.60
6	0.41072	3034.09
7	0.43504	4428.54
8	0.45752	6364.54
9	0.47453	8150.92
10	0.49398	10534.51
11	0.51585	13467.07
12	0.53645	16817.01
13	0.55486	20041.30
14	0.57197	23495.03
15	0.59094	27004.66
16	0.62026	36767.85
17	0.66113	51776.19
18	0.69811	70148.37
19	0.73877	89759.55
20	0.77817	117832.40

CAL-VTM is an in-situ calibration routine that validates the flow meter's calibration accuracy by testing the functionality of the sensor and its associated signal processing circuitry.

At the conclusion of the test, the meter will display a pass/fail message and the CAL-V™ data.

A "pass" result confirms the meter is measuring accurately.

1. The CAL-VTM test is valid for checking the calibration occuracy of flow meters installed in the application for which it was calibrated, including the gas/gas mixture, calibration range and pipe size shown on the Calibration Certificate. 2. For applications with temperature exceeding 250°F (121°C), CAL-V™ test results may vary.

Fox Flow Meter 21776 Certification Documentation, Pre-Winter Testing

FLOW METER CALIBRATION CERTIFICATE

Serial #:	21773	Dia. =	3.068	in	
Model #:	FT3-18R	Area =	0.0513379	Ft^2	
Fluid Type:	32.43% CH4, 25.81% C2H6, 18.17% C3H8, 12.4% C4H10, 6.51% C5	iH12, 1.98% CO2 et al.			
STP:	60 F, 14.73 psia	4 mA =	0	MSCFD	
IDTag:		20 mA =	500.00	MSCFD	

CURVE #1 (WINTER PHASE)

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STF
1	0.24843	0.00	0.000
2	0.31411	361.57	1.541
2 3	0.34489	720.92	3.073
4	0.37772	1416.74	6.040
5	0.39928	2124.81	9.058
	0.42117	3047.04	12.990
6 7	0.44471	4479.92	19.098
8	0.46667	6337.85	27.019
9	0.48473	8213.58	35.015
10	0.50410	10681.78	45.538
11	0.52471	13620.33	58.065
12	0.54271	16871.31	71.924
13	0.55893	20039.26	85.430
14	0.57581	23476.32	100.082
15	0.59098	27135.50	115.682
16	0.62424	36702.57	156,467
17	0.66444	51551.51	219,770
18	0.70342	69025.67	294.264
19	0.74421	91700.81	390.931
20	0.78249	118310.34	504.370

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved By: Ross Johnson	Cal Date: 6/13/2016 9:31	
	Calibration Standards	ann fhair fean ann an Anna
Description	Inst. ID #	Due Date
Meter DVM	FOX A009	10/06/2016
Ref1 DVM	FOX A0121	10/06/2016
Pressure transducer	PRESS-007	08/06/2016
Thermometer	TEMP-SYS-001	10/07/2016
Therm Flowmeter	2135	12/11/2016

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

F-131, Flow Meter Calibration Certificate

Rev. C, 05/08/14

AS LEFT CALIBRATION CERTIFICATE

erial #:	21773			
Aodel #:	FT3-18R			
luid Type:	32.43% CH4, 25.81% C2H	5, 18.17% C3H8,	12.4% C4H10, 6.51% (C5H12, 1.98% CO2 et al.
Calibration Range:	0 to	100	MSCFD	
Actual Flow MSCFD	Device Under Test MSCFD	Error MSCFD	Error % Reading	Fox Specification % Reading
0	0	0.00	0.00%	± 0.00%
6.32	6.20	-0.11	-1.81%	± 4.16%
12.16	12.39	0.24	1.96%	± 2.65%
25.03	25.19	0.15	0.62%	± 1.80%
50.65	51.05	0.40	0.78%	± 1.39%
75.51	76.02	0.51	0.68%	± 1.26%
100.19	100.16	-0.03	-0.03%	± 1.20%
This calib	ration is traceable to the National 2% of full scale using measurem	I Institute of Standar ents traceable to NP	rds and Technology to an unc ST Standards in accordance	ertainty of +/-1% of reading with Mil-Std-45662A.
+/	276 of full scale using measurem	cars tracenore to rus		
Prepared By:	Ross John	son	Cal. Equip. No:	2135
Date:	June 13, 2	016		

12/08/11. ALT/CHG

FLOW METER CALIBRATION CERTIFICATE

Serial #:	21773	Dia. =	3.068	in
Model #:	FT3-18R	Area =	0.0513379	Ft^2
Fluid Type:	20.89% CH4, 18.16% C2H6, 16.52% C3H8, 17.99% C4H10, 15.49% C5F	112, 2.63% C6H14,	1.85% C7H16, 1.	32% CO2 et al.
STP:	60 F, 14.73 psia	4 mA = 20 mA =	0 500.00	MSCFD MSCFD

IDTag:

CURVE #2 (SUMMER PHASE)

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
Dala Politi	0.24207	0.00	0.000
1		347.59	1.482
2	0.30961	692.77	2.953
3	0.34132		6.138
4	0.37812	1439.68	9,119
5	0.40067	2138.94	
6	0.42172	3089.35	13.170
7	0,44412	4511.51	19.233
8	0.46814	6414.52	27.346
8 9	0.48823	8335.38	35.535
10	0.50664	10514.75	44.826
	0.52997	13737.18	58.563
11	0.54990	16973.42	72.360
12	0.56658	20114.83	85.752
13		23461.18	100.018
14	0.58277	27264.21	116.230
15	0.60025		155.686
16	0.63782	36519.42	221.788
17	0.67888	52024.99	294.728
18	0.72084	69134.47	
19	0.76361	90832.28	387.228
20	0.79654	117734.83	501.916
20			

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Description	Inst. ID #	Due Date
Meter DVM	FOX A009	10/06/2016
Ref1 DVM	FOX A0121	10/06/2016
Pressure transducer	PRESS-007	08/06/2016 10/07/2016
Thermometer Therm Flowmeter	TEMP-SYS-001 2135	12/11/2016
Fox maintains all equipn	nent according to the Equipment Co	nirol Procedure (P-060).

399 Reservation Road, Marina, California 93933 (831) 384-4300

AS LEFT CALIBRATION CERTIFICATE Serial #: 21773 FT3-18R Model #: 20.89% CH4, 18.16% C2H6, 16.52% C3H8, 17.99% C4H10, 15.49% C5H12, 263% C6H14, 1.85% C7H16, 1.32% CO2 et al. Fluid Type: 100 MSCFD 0 to Calibration Range: Fox Specification Actual Flow MSCFD Error % Reading **Device Under Test** Error % Reading MSCFD MSCFD ± 0.00% 0.00% 0 0.00 0 ± 4.15% 0.13 2.04% 6.49 6.36 ± 2.57% 1.81% 0.23 12.71 12.94 ± 1.79% 1.66% 25.64 0.42 25.22 ± 1.40% 0.37 0.74% 50.55 50.18 ± 1.26% 0.32 0.42% 76.17 75.86 ± 1.20% 0.19% 100.57 0.19 100.38 This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/-1% of reading +/- .2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Std-45662A. Cal. Equip. No: 2135 **Ross Johnson** Prepared By: June 13, 2016 Date:

12/08/11, ALT/CHG

Fox Flow Meter 21773 Certification Documentation, Pre-Summer Testing

FO	X
THERMAL INSTR Fox is iso good THERMAL MASS	01 certified

	FLOW METER CALIBRATION CERTIFICATE					
Serial #:	21775	Dia. =	3.068	in		
Model #:	FT3-18R	Area =	0.0513379	Ft^2		
Fluid Type:	32.43% CH4, 25.81% C2H6, 18.17% C3H8, 12.4% (C4H10, 6.51% C5H12, 1.98% CO2 et al.				
STP:	60 F, 14.73 psia	4 mA =	0	MSCFD		
IDTag:		20 mA =	500.00	MSCFD		

CURVE #1 (WINTER PHASE)

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
1	0.24956	0.00	0.000
2	0.30806	325.85	1.389
2 3	0.34091	713.84	3.043
4	0.37326	1408.25	6.004
5	0.39505	2111.87	9.003
6	0.41702	3085.73	13.155
7	0.43996	4489.01	19.137
8 9	0.46208	6443.38	27.469
9	0.47936	8287.92	35.332
10	0.49824	10623.15	45.288
11	0.51875	13682.28	58.329
12	0.53634	16985.44	72.411
13	0.55162	19936.80	84.993
14	0.56887	23558.24	100.431
15	0.58253	26849.46	114.462
16	0.61645	36463.13	155.446
17	0.65672	51955.80	221.493
18	0.69528	69190.18	294.965
19	0.73299	90524.99	385.918
20	0.77205	117683.74	501.699

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved By: Ross Johnson		Cal Date: 6/10/2016 15:21	
	Calibration Standards		
Description	Inst. ID #	Due Date	
Meter DVM	FOX A009	10/06/2016	
Ref1 DVM	FOX A0121	10/06/2016	
Pressure transducer	PRESS-007	08/06/2016	
Thermometer	TEMP-SYS-001	10/07/2016	
Therm Flowmeter	2135	12/11/2016	

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

F-131, Flow Meter Calibration Certificate

Rev. C, 05/08/14

399 Reservation Road, Marina, California 93933 (831) 384-4300

AS LEFT CALIBRATION CERTIFICATE

ierial #:	21775				
Aodel #:	FT3-18R				
luid Type:	32.43% CH4, 25.81%	C2H6, 1	18.17% C3H8	8, 12.4% C4H10, 6.51%	C5H12, 1.98% CO2 et al.
Calibration Range:	0	to	100	MSCFD	
Actual Flow MSCFD	Device Under Te MSCFD	st	Error MSCFD	Error % Reading	Fox Specification % Reading
0	0		0.00	0.00%	± 0.00%
6.27	6.45		0.19	2.96%	± 4.19%
12.14	12.39		0.25	2.02%	± 2.65%
25.53	25.98		0.45	1.75%	± 1.78%
50.22	50.05		-0.17	-0.33%	± 1.40%
75.88	76.44		0.56	0.74%	± 1.26%
100.15	100.55		0.40	0.40%	± 1.20%
This cali	bration is traceable to the l	National In	stitute of Standa	ards and Technology to an un	certainty of +/-1% of reading
+/	2% of full scale using me	asurement	s traceable to N	IST Standards in accordance	e with Mil-Std-45662A.
Prepared By:	Ross	Johnson	n	Cal. Equip. No:	2135
Date:	lune	10, 201	6		

12/08/11, ALT/CHG

THERMAL M	FLOW METERS	BRATION CERTIFICATE		
Serial #:	21775	Dia. =	3.068	in
Model #:	FT3-18R	Area =	0.0513379	Ft^2
Fluid Type:	20.89% CH4, 18.16% C2H6, 16.52% C3H8, 17.99% C	24H10, 15.49% C5H12, 2.63% C6H14,	1.85% C7H16, 1.	.32% CO2 et al
STP:	60 F, 14.73 psia	4 mA = 20 mA =	0 500.00	MSCFD MSCFD
IDTag:	-			

CURVE #2 (SUMMER PHASE)

Data Point	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
Dala Folin	0.25087	0.00	0.000
1	0.30618	346.13	1.476
2 3	0.34148	742.08	3.164
3	0.37384	1424.38	6.072
4	0.37636	2165.37	9.231
5	0.41655	3077.94	13.122
6	0.44074	4555.05	19.419
/	0.46176	6358.24	27.106
8 9	0.48202	8269.25	35.253
		10577.25	45.092
10	0.50132	13755.86	58.643
11	0.52306	16863.68	71.892
12	0.54156	20119.64	85.772
13	0.55842		100.618
14	0.57475	23601.98	115.851
15	0.59140	27175.32	155.268
16	0.62831	36421.34	219.431
17	0.66842	51472.13	298.282
18	0.71273	69968.20	383.067
19	0.74875	89856.30	502.382
20	0.78550	117844.08	JUZ.JUZ

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

	Calibration Standards		
Description	Inst. ID #	Du	ue Date
Meter DVM Ref1 DVM Pressure transducer Thermometer Therm Flowmeter	FOX A009 FOX A0121 PRESS-007 TEMP-SYS-001 2135	10 08 10	0/06/2016 0/06/2016 8/06/2016 0/07/2016 2/11/2016

Fox maintains all equipment according to the Equipment Control Procedure (P-060).

F-131, Flow Meter Calibration Certificate

Rev. C, 05/08/14

399 Reservation Road, Marina, California 93933 (831) 384-4300

erial #:	21775			
Nodel #:	FT3-18R			
luid Type:	20.89% CH4, 18.16% C2H6, 16.52% C	3H8, 17.99% C4H10, 15.499	% C5H12, 2.63% C6H14, 1.85% C7H16, 1.32	2% CO2 et al.
Calibration Range:	0 to	> 100	MSCFD	
		CURVE	#2	
Actual Flow MSCFD	Device Under Test MSCFD	Error MSCFD	Error % Reading	Fox Specification % Reading
0	0	0.00	0.00%	± 0.00%
6.27	6.36	0.09	1.45%	± 4.19%
12.54	12.86	0.32	2.53%	± 2.59%
25.65	26.03	0.38	1.48%	± 1.78%
50.50	50.26	-0.24	-0.48%	± 1.40%
76.03	76.43	0.40	0.53%	± 1.26%
100.80	101.06	0.27	0.27%	± 1.20%
This cali +/	bration is traceable to the Natio	nal Institute of Stand: ements traceable to N	and Technology to an uncertain IST Standards in accordance with	nty of +/-1% of reading Mil-Std-45662A.
Prepared By:	Ross Joh	nson	Cal. Equip. No:	2135
Date:	June 10,	2016		

12/08/11, ALT/CHG

Fox Flow Meter 21775 Certification Documentation, Pre-Summer Testing

FLOW METER CALIBRATION CERTIFICATE

		Dia. =	3.068	in	
Serial #:	21776		0.0510070	Ft^2	
Model #:	FT3-18R	Area =	0.0513379	FINZ	
Fluid Type:	32.43% CH4, 25.81% C2H6, 18.17% C3H8, 12.39% C	4H10, 6.51% C5H12, 1.98% CO2 et a	l.		
STP:	60 F, 14.73 psia	4 mA = 20 mA =	0 500.00	MSCFD MSCFD	
IDIag:	- <i>2</i>				

CUREV#1 (WINTER PHASE)

	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
Data Point		0.00	0.000
	0.25281	338.93	1.445
2	0.30696		3.043
3	0.33680	713.76	5,930
4	0.37021	1390.98	
4	0.39197	2100.04	8.953
5	0.41356	3077.17	13.118
6	0.43567	4431.26	18.891
7		6410.16	27.327
8	0.45820	8248.02	35.162
9	0.47524	10594.71	45.166
10	0.49336		58,137
11	0.51357	13637.28	72.306
12	0.53108	16960.82	
	0.54525	19884.95	84.772
13	0.56214	23565.38	100.462
14		26940.11	114.849
15	0.57555	36597.02	156.017
16	0.60708		220.245
17	0.64608	51663.01	296.283
18	0.68398	69499.35	
	0.71948	90617.97	386.314
19	0.75660	117840.11	502.365
20	0.75880		

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

	Calibration Standards	
Description	Inst. ID #	Due Date
Meter DVM Ref1 DVM Pressure transducer Thermometer Therm Flowmeter	FOX A009 FOX A0121 PRESS-007 TEMP-SYS-001 2135	10/06/2016 10/06/2016 08/06/2016 10/07/2016 12/11/2016

F-131, Flow Meter Calibration Certificate

Rev. C. 05/08/14

399 Reservation Road, Marina, California 93933 (831) 384-4300

AS LEFT CALIBRATION CERTIFICATE

erial #:	21776			
Nodel #:	FT3-18R			
luid Type:	32.43% CH4, 25.81% C2H6	, 18.17% C3H8,	12.39% C4H10, 6.51% C5	H12, 1.98% CO2 et al.
Calibration Range:	0 to	100	MSCFD	
Actual Flow MSCFD	Device Under Test MSCFD	Error MSCFD	Error % Reading	Fox Specification % Reading
0	0	0.00	0.00%	± 0.00%
6.63	6.84	0.21	3.17%	± 4.02%
12.04	12.30	0.26	2.16%	± 2.66%
25.47	25.81	0.34	1.35%	± 1.79%
50.42	50.57	0.15	0.30%	± 1.40%
76.32	77.03	0.71	0.93%	± 1.26%
100.30	100.35	0.05	0.05%	± 1.20%
This calit +/-	oration is traceable to the National	Institute of Standar ents traceable to NIS	ds and Technology to an uncertai T Standards in accordance with	nty of +/-1% of reading Mil-Std-45662A.
Prepared By:	Ross Johns	on	Cal. Equip. No:	2135
Date:	June 10, 20	016		

12/08/11, ALT/CHG

FLOW METER CALIBRATION CERTIFICATE

		Dia. =	3.068	in
Serial #:	21776		0.0513379	Ft^2
Model #:	FT3-18R	Area =		
Fluid Type:	20.89% CH4, 18.16% C2H6, 16.52% C3H8, 17.99% C4	IH10, 15.49% C5H12, 2.63% C6H14, 1	.85% C7H16, 1	32% CO2 et di.
STP:	60 F, 14.73 psia	4 mA = 20 mA =	0 500.00	MSCFD MSCFD
IDTag:				

CURVE# 2 (SUMMER PHASE)

	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
Data Point	the second se	0.00	0.000
1	0.25202		1.302
2	0.30420	305.49	2.881
2 3	0.33253	675.84	6.032
	0.37029	1415.01	8,995
4 5	0.39308	2110.01	13.253
	0.41437	3108.68	
6	0.43513	4448.27	18.963
6 7 8 9		6290.17	26.816
8	0.45737	8208.03	34.992
9	0.47725	10652.81	45.414
10	0.49705	13668.24	58.269
11	0.51776		72.397
12	0.53657	16982.11	85.687
13	0.55249	20099.58	100.196
	0.56809	23503.04	116.303
14	0.58426	27281.23	
15	0.62062	36716.38	156.526
16	0.65979	51800.27	220.830
17		69658.95	296.964
18	0.69911	90127.54	384.223
19	0.73679		507.741
20	0.77558	119101.22	30717
20			

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved By: Ross Johnson	Calibration Standards		
Description Meter DVM Ref1 DVM Pressure transducer Thermometer Therm Flowmeter	Inst. ID # FOX A009 FOX A0121 PRESS-007 TEMP-SYS-001 2135	10/ 10/ 08/ 10/	e Date 106/2016 106/2016 106/2016 107/2016 1/1/2016
Fox maintains all equip	ment according to the Equipment C	Control Procedure	(P-060).
F-131, Flow Meter Calibration Certificate			Rev. C, 05/08/14

399 Reservation Road, Marina, California 93933 (831) 384-4300

erial #:	21776			
lodel #:	FT3-18R			
uid Type: 2	0.89% CH4, 18.16% C2H6, 16.52% C3H8	, 17.99% C4H10, 15.49%	C5H12, 2.63% C6H14, 1.85% C7H16, 1.3	2% CO2 et al.
alibration Range:	0 to	100	MSCFD	
		CURVE	#2	
Actual Flow MSCFD	Device Under Test MSCFD	Error MSCFD	Error % Reading	Fox Specification % Reading
0	0	0.00	0.00%	± 0.00%
5.90	6.04	0.14	2.29%	± 4.39%
12.19	12.41	0.22	1.78%	± 2.64%
25.37	25.70	0.33	1.32%	± 1.79%
50.44	50.33	-0.11	-0.21%	± 1.40%
75.06	75.71	0.65	0.87%	± 1.27%
101.03	101.07	0.04	0.04%	± 1.20%
		x		
This calil +/-	pration is traceable to the Nationa .2% of full scale using measurem	al Institute of Stand	ards and Technology to an uncert IST Standards in accordance wit	mii-Sta-45002A.
Prepared By:	Ross Johr	nson	Cal. Equip. No:	2135
Date:	June 10, 2	2016		

12/08/11, ALT/CHG

Fox

FLOW METER CALIBRATION CERTIFICATE in Dia. = 3.068 21776 Serial #: 0.0513379 F†^2 Area = Model #: FT3-18R 26.25% CH4, 22.05% C2H6, 18.19% C3H8, 15.96% C4H12, 10.64% C5H12, 1.45% C6H14, 1.63% CO2 et al. Fluid Type: 0 MSCFD 4 mA = 60 F, 14.73 psia STP: MSCFD 500.00 20 mA = IDTag:

Curve #3 Intermediate phase (data only)

n i nitel	Input Volts	NMPH at 0 C 760 mmHg	MSCFD at STP
Data Point		0.00	0.000
1	0.24538	365.69	1.559
2	0.31373		3.017
3	0.33771	707.65	6.120
4	0.37373	1435.64	9.005
5	0.39553	2112.35	13.061
	0.41609	3063.63	18.769
6 7	0.43854	4402.57	
8	0.46190	6398.36	27.277
9	0.47934	8211.05	35.005
	0.49880	10552.38	44.986
10	0.47880	13658.25	58.227
11		16926.08	72.158
12	0.53839	20172.90	85.999
13	0.55452	23476.98	100.085
14	0.56928		114,986
15	0.58245	26972.29	156.211
16	0.61628	36642.51	222.235
17	0.65654	52129.83	296.794
18	0.69279	69619.08	
19	0.72998	90912.78	387.571
20	0.76891	119171.89	508.043
20			

This unit was calibrated using calibration standards traceable to National Institute of Standards and Technology (NIST), to an uncertainty of +/-1.0% of reading +/- 0.2% of full scale. Fox Thermal Instruments, Inc. is an ISO 9001 certified company. This certificate shall not be reproduced, except in full, without the written consent of Fox Thermal Instruments.

Approved By: Ross Johnson	Calibration Standards	
Description	Inst. ID #	Due Date
Description Instruction Meter DVM FOX A009 Ref1 DVM FOX A0121 Pressure transducer PRESS-007 Thermometer TEMP-SYS-001 Therm Flowmeter 2135	FOX A0121 PRESS-007 TEMP-SYS-001	10/06/2016 10/06/2016 08/06/2016 10/07/2016 12/11/2016
Therm Flowmeter	2135 nent according to the Equipment C	

F-131, Flow Meter Calibration Certificate

Rev. C, 05/08/14

399 Reservation Road, Marina, California 93933 (831) 384-4300

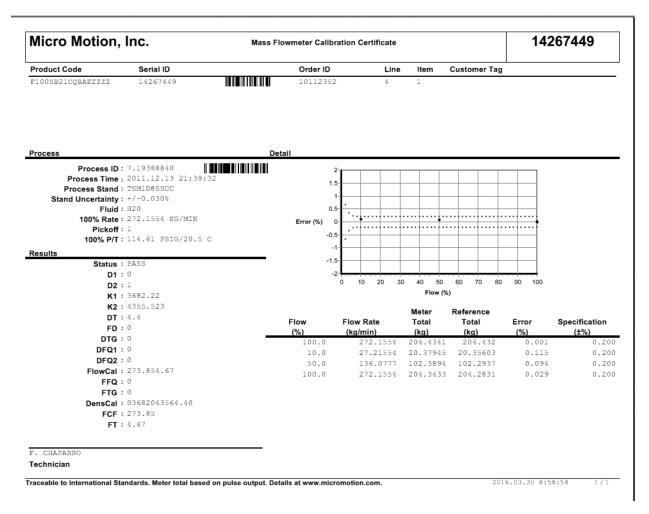
erial #:	21776			
Nodel #:	FT3-18R			
luid Type:	26.25% CH4, 22.05% C2H6, 18.19% C3	H8, 15.96% C4H12,	10.64% C5H12, 1.45% C6H14, 1.63% C	02 et al.
Calibration Range:	0 to	100	MSCFD	
	Curev #3	Intermidiate	ohase (data only)	
Actual Flow MSCFD	Device Under Test MSCFD	Error MSCFD	Error % Reading	Fox Specification % Reading
0	0	0.00	0.00%	± 0.00%
6.03	6.11	0.08	1.31%	± 4.32%
12.63	12.89	0.26	2.04%	± 2.58%
25.71	25.92	0.20	0.79%	± 1.78%
50.74	50.79	0.05	0.10%	± 1.39%
75.93	75.81	-0.12	-0.16%	± 1.26%
100.51	100.34	-0.17	-0.17%	± 1.20%
100.01				
This ca	libration is traceable to the National	Institute of Stand ents traceable to N	ards and Technology to an uncerta IST Standards in accordance with	inty of +/-1% of reading 1 Mil-Std-45662A.
Prepared By:	Ross Johns	ion	Cal. Equip. No:	2135
Date:	June 10, 2	016		

12/08/11, ALT/CHG

Flow Meter 21776 Certification Documentation, Pre-Summer Testing

Fluid Type: Curve 2 Calibration Range: 0 to 500.00 MSCFD June October CSV Error Fox Specification MSCFD MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2421 0.00% % Reading 0.84 1.48 0.2802 -76.85% ± 120.54% 2.51 3.01 0.3227 -19.85% ± 40.85% 5.86 6.09 0.3754 -3.94% ± 18.08% 12.55 13.17 0.4188 -4.92% ± 8.97% 18.40 18.96 0.4413 -3.04% ± 13.08% 26.77 26.93 0.4666 -0.61% ± 7.47% 34.30 34.497 0.4864 -1.97% ± 3.92% 44.34 45.13 0.5067 -1.80% ± 3.28% 57.72 58.24 0.5286 -0.89% ± 2.73% 70.27 71.95 0.5471 -2.29% ± 2.42% 98.	Calibration Range: 0 to 500.00 MSCFD June October CSV Error Fox Specification MSCFD WSCPD VOLTS % Reading % Reading 0.00 0.00 0.2421 0.00% 0.84 1.48 0.2802 -76.88% ± 120.54% 2.51 3.01 0.3327 -19.85% ± 40.85% 8.87 0.3955 -6.06% ± 120.54% 2.55 13.17 0.4188 -4.92% ± 8.97% 18.40 18.96 0.4413 -3.04% ± 6.43% 26.77 25.93 0.4666 -0.61% ± 2.95% 34.30 34.97 0.4854 -1.97% ± 3.92% 44.34 45.13 0.5057 -1.80% ± 2.27% 70.27 71.95 0.5471 -2.39% ± 2.42% 82.82 84.63 0.5631 -2.23% ± 2.42% 98.71 100.02 0.5813 -1.33% ± 2.01%
June October CSV Error Fox Specification MSCFD MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2421 0.00% 0.84 1.48 0.2802 -76.88% ± 120.54% 2.51 3.01 0.32327 -79.88% ± 40.85% 5.86 6.09 0.3754 -3.94% ± 18.06% 8.37 0.3955 -6.08% ± 12.35% ± 40.85% 12.55 13.17 0.4188 -4.32% ± 6.97% 12.55 13.17 0.4188 -4.32% ± 6.97% 26.77 28.39 0.4666 -0.61% ± 7.47% 26.77 28.39 0.4666 -0.61% ± 7.47% 34.30 34.497 0.4864 -1.97% ± 3.92% 44.34 45.13 0.5057 -1.80% ± 3.26% 57.72 58.24 0.5268 -0.69% ± 2.21% 98.71 100.02 0.5813 -2.39% ± 2.42%<	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2421 0.00% 0.84 1.48 0.2802 -76.88% ±120.54% 2.51 3.01 0.3227 -19.85% ±40.85% 5.86 6.09 0.3754 -3.94% ±18.08% 2.51 3.17 0.4188 -4.92% ± 8.97% 12.55 13.17 0.4188 -4.92% ± 8.97% 12.40 18.96 0.4413 -3.04% ± 6.43% 26.77 26.93 0.4666 -0.61% ± 7.74% 34.30 34.97 0.4864 -1.197% ± 3.92% 44.34 45.13 0.5057 -1.80% ± 3.26% 57.72 58.24 0.5286 -0.89% ± 2.73% 70.27 71.95 0.5471 -2.29% ± 2.42% 98.71 100.02 0.5813 -1.33% ± 2.01% 98.71 100.02 0.5813 -1.33% ± 2.01% 98	MSCFD WOLTS % Reading % Reading 0.00 0.00 0.2421 0.00% 0.84 1.48 0.2802 -76.88% ± 120.54% 2.51 3.01 0.3327 -19.85% ± 120.54% 5.86 6.09 0.3754 -3.94% ± 18.08% 8.87 8.87 0.3955 -6.06% ± 12.25% 12.55 13.17 0.4188 -4.92% ± 8.97% 18.40 18.96 0.4413 -3.04% ± 8.97% 44.34 45.13 0.057 -1.80% ± 2.25% 57.72 26.93 0.4686 -0.61% ± 2.73% 44.34 45.13 0.0266 -0.89% ± 2.27% 70.27 71.95 0.5471 -2.39% ± 2.42% 82.82 84.63 0.6631 -2.20% ± 2.21% 82.82 84.63 0.6631 -2.20% ± 2.21% 82.82 84.63 0.6631 -2.20% ± 2.21% 9
MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2421 0.00% 0.84 1.48 0.2802 -76.88% ±120.54% 2.51 3.01 0.3227 -19.85% ±40.85% 5.86 6.09 0.3754 -3.94% ±18.08% 2.51 3.17 0.4188 -4.92% ± 8.97% 12.55 13.17 0.4188 -4.92% ± 8.97% 12.40 18.96 0.4413 -3.04% ± 6.43% 26.77 26.93 0.4666 -0.61% ± 7.74% 34.30 34.97 0.4864 -1.197% ± 3.92% 44.34 45.13 0.5057 -1.80% ± 3.26% 57.72 58.24 0.5286 -0.89% ± 2.73% 70.27 71.95 0.5471 -2.29% ± 2.42% 98.71 100.02 0.5813 -1.33% ± 2.01% 98.71 100.02 0.5813 -1.33% ± 2.01% 98	MSCFD WOLTS % Reading % Reading 0.00 0.00 0.2421 0.00% 0.84 1.48 0.2802 -76.88% ± 120.54% 2.51 3.01 0.3327 -19.85% ± 120.54% 5.86 6.09 0.3754 -3.94% ± 18.08% 8.87 8.87 0.3955 -6.06% ± 12.25% 12.55 13.17 0.4188 -4.92% ± 8.97% 18.40 18.96 0.4413 -3.04% ± 8.97% 44.34 45.13 0.057 -1.80% ± 2.25% 57.72 26.93 0.4686 -0.61% ± 2.73% 44.34 45.13 0.0266 -0.89% ± 2.27% 70.27 71.95 0.5471 -2.39% ± 2.42% 82.82 84.63 0.6631 -2.20% ± 2.21% 82.82 84.63 0.6631 -2.20% ± 2.21% 82.82 84.63 0.6631 -2.20% ± 2.21% 9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
82.82 84.83 0.5631 -2.20% ±2.21% 98.71 100.02 0.5813 -1.33% ±2.01% 113.77 115.42 0.5977 -1.45% ±1.88% 153.92 166.38 0.6364 -1.60% ±1.65% 214.99 218.73 0.6748 -1.74% ±1.47% 287.77 233.12 0.7172 -1.86% ±1.35% 363.89 385.50 0.7542 -5.94% ± 1.27%	82.82 84.63 0.5631 -2.20% ±2.21% 98.71 100.02 0.5813 -1.33% ±2.01% 113.77 115.42 0.5977 -1.45% ±1.88% 153.92 156.38 0.6364 -1.60% ±1.65%
	287.77 293.12 0.7172 -1.86% ± 1.35% 363.89 385.50 0.7542 -5.94% ± 1.27%
This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/-1% of reading	
This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/-1 % of reading +/2% of full scale using measurements traceable to NIST Standards in accordance with MII-Std-45662A.	
Prepared By: Octavio Avila Cal. Equip. No: 2135	
Catavia Avila Iudi. Edup. No: 2135	+/2% of full scale using measurements traceable to NIST Standards in accordance with MII-Std-45662A.

			<i>•</i> ,						
			FO	Y					
		200 Pasangtion		alifornia 93933 (831) 384	4300				
			FOUND CALIBRAT		-4300				
	Serial #:	21773							
	Model #: Fluid Type:	FT3 Curve 1				-			
	Calibration Range:		to 500.00	MSCFD		-			
						-			
	June	October	CSV	Error	Fox Specification	1			
	MSCFD	MSCFD	VOLTS	% Reading	% Reading	-			
	0.00	0.00	0.2484	0.00%					
	1.68 2.52	1.46 2.99	0.3173 0.3349	13.41% -18.60%	± 60.48% ± 40.65%				
	5.88	6.07	0.3763	-3.17%	± 17.99%				
	8.41 12.61	9.04 13.08	0.3950 0.4193	-7.57% -3.72%	± 12.90% ± 8.93%				
	18.49 26.06	18.95 27.07	0.4426 0.4642	-2.47% -3.89%	± 6.41% ± 4.84%				
	34.47 44.55	35.26 45.04	0.4836	-2.30%	± 3.90%				
	56.32	57.69	0.5024 0.5221	-1.08% -2.43%	± 3.24% ± 2.78%				
	70.61 84.06	71.86 85.47	0.5411 0.5573	-1.77% -1.67%	± 2.42% ± 2.19%				
	98.35 112.64	100.09 114.95	0.5740 0.5881	-1.77% -2.05%	± 2.02% ± 1.89%				
	152.99	155.45	0.6216	-1.61%	± 1.65%				
	216.88 290.85	221.34 296.36	0.6628 0.7018	-2.06% -1.89%	± 1.46% ± 1.34%	1			
~	379.12 488.40	387.21 504.33	0.7396	-2.13% -3.26%	± 1.26% ± 1.20%				
	This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/-1% of reading								
	This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/-1% of reading +/2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Std-45662A.								
- 1	Prepared By:	Octavio Avila		Cal. Equip. No: 2135					
	Date:	October 2				-			


Flow Meter 21773 Certification Documentation, Post-Summer Testing

		FO	X		
	399 Reservation Ro		lifornia 93933 (831) 384-4	300	
		OUND CALIBRATI			
Serial #:	21776				
Model #:	FT3				
Fluid Type: Cu Calibration Range:	0 to	500.00	MSCFD		
Calibration Range.	0 10	500.00	Moerb		
June	October	CSV	Error	Fox Specification	-
MSCFD	MSCFD	VOLTS	% Reading	% Reading	
0.00	0.00	0.2520	0.00%		
1.30	0.84	0.3042	35.84%	± 77.79%	
2.88 6.03	2.51 5.85	0.3325 0.3703	13.00% 3.04%	± 35.71% ± 17.58%	
9.00	8.36	0.3931	7.11%	± 12.12%	
13.25 18.96	11.70 16.71	0.4144 0.4351	11.73% 11.88%	± 8.55% ± 6.27%	
26.82	23.40	0.4574	12.76%	± 4.73%	
34.99 45.41	30.92 40.11	0.4773 0.4971	11.65% 11.69%	± 3.86% ± 3.20%	
58.27 72.40	51.80 64.34	0.5178 0.5366	11.10% 11.13%	± 2.72% ± 2.38%	245
85.69	76.87	0.5525	10.29%	± 2.17%	
100.20 116.30	90.24 104.44	0.5681 0.5843	9.94% 10.20%	± 2.00% ± 1.86%	
156.53 220.83	140.37 194.68	0.6206 0.6598	10.32% 11.84%	± 1.64%	
296.96	261.52	0.6991	11.93%	± 1.45% ± 1.34%	
384.22 507.74	345.91 455.37	0.7368 0.7756	9.97% 10.31%	± 1.26% ± 1.20%	
			is and Technology to an uncertaint Γ Standards in accordance with M		
+/2%	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	fil-Std-45662A.	
		ents traceable to NIS	I Standards in accordance with M		
+/2% Prepared By:	of full scale using measurem Octavio A	ents traceable to NIS	I Standards in accordance with M	fil-Std-45662A.	
+/2% Prepared By:	of full scale using measurem Octavio A	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALI/CHG
+/2% Prepared By:	of full scale using measurem Octavio A	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALT/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALI/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALT/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALI/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALI/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALI/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALI/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	l, ALI/CHG
+/2% Prepared By:	of full scale using measurem	ents traceable to NIS	I Standards in accordance with M	IB-Std-45662A.	1, ALI/CHG

399 Reservation Road, Marina, California 7933 (831) 384-4300 As FOUND CALIBRATION CERTIFICATE Serial #: 1276 Model #: FT3 Fluid Type: Curve 2 Calibration Range: 0 to 500.00 MSCFD June October CSV Error Fox Specificatio MSCFD WOLTS % Reading % Reading % Reading 0.00 0.00 0.2520 0.00% 1.30 0.84 0.3042 35.84% ± 77.79% 2.88 2.51 0.3255 13.00% ± 35.71% ± 12.12% § 6.03 5.65 0.3703 3.04% ± 17.59% ± 8.25% £ 8.55% £ 8.55% £ 8.55% £ 8.55% £ 8.55% ± 12.12% ± 8.27% ± 8.69% ± 6.27% ± 8.69% ± 6.27% ± 8.27% ± 4.73% ± 4.73% ± 4.73% ± 4.73% ± 3.20% ± 3.20% ± 3.20% ± 3.20% ± 3.20% ± 3.20% ± 3.20% ± 3.20% ± 3.20% <th>1</th>	1
Model #: F13 Fluid Type: Curve 2 Callbration Range: 0 to 500.00 MSCFD June October CSV Error Fox Specificatio MSCFD MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2520 0.00% 1.30 2.88 2.51 0.3225 13.00% ± 35.71% 6.03 5.85 0.3235 13.00% ± 17.79% ± 12.12% 9.00 8.36 0.3931 7.11% ± 12.12% ± 8.55% 13.25 11.70 0.4144 11.73% ± 8.55% ± 6.27% 26.82 23.40 0.4574 12.76% ± 4.73% ± 3.66% 26.82 23.40 0.4574 11.85% ± 6.27% ± 3.20% 34.99 30.92 0.4773 11.65% ± 3.20% ± 3.20% 56.27 51.80 0.5178 11.10% ± 2.28% ± 2.38% ± 2.7% 85.69 76.87 <t< th=""><th></th></t<>	
Fluid Type: Curve 2 Callbration Range: 0 500.00 MSCFD June October CSV Error Fox Specification MSCFD MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2520 0.00% 1.30 0.84 0.3042 35.84% ± 77.79% 2.88 2.51 0.3325 13.00% ± 155.71% ± 12.12% 6.03 5.85 0.33703 3.04% ± 17.58% ± 6.27% 9.00 8.36 0.3931 7.11% ± 12.12% ± 12.12% 13.25 11.70 0.4144 11.73% ± 6.27% ± 6.27% 18.96 16.71 0.4351 11.89% ± 6.27% ± 3.66% 34.99 30.92 0.4773 11.65% ± 3.20% ± 3.20% 58.27 51.80 0.5178 11.10% ± 3.20% ± 2.38% ± 2.38% 85.69 76.87 0.5525 10.29% ± 2.38% ± 2.38% <td>n</td>	n
Calibration Range: 0 to 500.00 MSCFD June October CSV Error Fox Specification MSCFD WOLTS % Reading % Reading 0.00 0.00 0.2520 0.00% 1.30 0.84 0.3042 35.84% ± 77.79% 2.88 2.51 0.3325 13.00% ± 35.71% 6.03 5.85 0.3033 3.04% ± 17.58% 9.00 8.36 0.3931 7.11% ± 12.12% 13.25 11.70 0.4144 11.73% ± 8.65% 18.96 16.71 0.4574 12.7% ± 4.73% 26.82 23.40 0.4574 12.6% ± 4.73% 34.99 30.92 0.4773 11.65% ± 3.20% 45.41 40.11 0.4971 11.65% ± 3.20% 58.27 51.80 0.5178 11.10% ± 2.238% 72.40 64.34 0.5366 11.13% ± 2.38% <	n
MSCFD MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2520 0.00% 1.30 2.88 2.51 0.3325 13.00% ± 35.71% 6.03 5.85 0.3703 3.04% ± 177.58% 9.00% ± 35.71% ± 12.12% 9.00 8.36 0.3931 7.11% ± 12.12% ± 8.55% ± 8.55% 13.25 11.70 0.4144 11.73% ± 8.55% ± 6.27% 26.82 2.340 0.4574 12.76% ± 4.73% 34.99 30.92 0.4773 11.65% ± 3.86% 45.41 40.11 0.4971 11.69% ± 3.20% 56.27 51.80 0.5178 11.10% ± 2.27% 72.40 64.34 0.5366 11.13% ± 2.38% 85.69 76.87 0.5325 10.29% ± 2.17%	n
MSCFD MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2520 0.00% 1.30 2.88 2.51 0.3325 13.00% ± 35.71% 6.03 5.85 0.3703 3.04% ± 177.58% 9.00% ± 35.71% ± 12.12% 9.00 8.36 0.3931 7.11% ± 12.12% ± 8.55% ± 8.55% 13.25 11.70 0.4144 11.73% ± 8.55% ± 6.27% 26.82 2.340 0.4574 12.76% ± 4.73% 34.99 30.92 0.4773 11.65% ± 3.86% 45.41 40.11 0.4971 11.69% ± 3.20% 56.27 51.80 0.5178 11.10% ± 2.27% 72.40 64.34 0.5366 11.13% ± 2.38% 85.69 76.87 0.5325 10.29% ± 2.17%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
6.03 5.85 0.3703 3.04% ± 17.58% 9.00 8.36 0.3931 7.11% ± 12.12% 13.25 11.70 0.4144 11.73% ± 8.55% 18.96 16.71 0.4331 11.88% ± 6.27% 26.82 23.40 0.4574 12.76% ± 3.86% 45.41 40.11 0.4473 11.65% ± 3.86% 45.41 40.11 0.4971 11.65% ± 3.20% 58.27 51.80 0.5178 11.10% ± 2.72% 72.40 64.34 0.5366 11.13% ± 2.38% 85.69 7.687 0.5525 10.29% ± 2.17%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
18.96 16.71 0.4351 11.88% ± 6.27% 26.82 23.40 0.4574 11.87% ± 4.73% 34.99 30.92 0.4773 11.65% ± 3.86% 45.41 40.11 0.4971 11.69% ± 3.20% 56.27 51.80 0.5178 11.10% ± 2.72% 72.40 64.34 0.5366 11.13% ± 2.38% 85.69 76.87 0.5525 10.29% ± 2.17%	
34.99 30.92 0.4773 11.65% ± 3.86% 45.41 40.11 0.4971 11.65% ± 3.20% 58.27 51.80 0.5178 11.10% ± 2.22% 72.40 64.34 0.5366 11.13% ± 2.38% 85.69 76.87 0.5525 10.29% ± 2.17%	
58.27 51.80 0.5178 11.10% ± 2.72% 72.40 64.34 0.5366 11.13% ± 2.38% 85.69 76.87 0.5525 10.29% ± 2.17%	
72.40 64.34 0.5366 11.13% ± 2.38% 85.69 76.87 0.5525 10.29% ± 2.17%	
100.20 90.24 0.5681 9.94% ± 2.00%	
116.30 104.44 0.5843 10.20% ±1.86% 156.53 140.37 0.6206 10.32% ±1.64%	
220.83 194.68 0.6598 11.84% ±1.45% 296.96 261.52 0.6991 11.93% ±1.34%	
384.22 345.91 0.7368 9.97% ± 1.26%	
507.74 455.37 0.7756 10.31% ± 1.20%	
Prepared By: Octavio Avila Cal. Equip. No: 2135	
Date: October 26, 2016	
	12/08/11, ALT/CHG

<image/> <image/> <image/> <image/> <image/> <image/> <image/> <text></text>						
DIPUND CALIBRATION CERTIFICATE Initial initinitial initinitialinitinitinitial initial initial initial initial			50			
Seriel #: 21776 Model #: F3 Fluid Type: Curve 1 Celloretion Range: 0 to \$00.00 MSCPD June October CSV % Reading % Reading MSCPD MSCPD VOLTB % Reading % Reading 1.44 0.84 0.3070 41.94% ± 70.21% 3.53 0.87 0.3762 0.07% ± 17.85% 3.53 0.87 0.3762 0.97% ± 17.85% 3.53 0.87 0.3762 0.97% ± 17.85% 3.53 0.87 0.3762 0.97% ± 17.85% 3.54 0.4397 0.4396 0.37% ± 17.85% 3.53 0.87 0.3762 0.97% ± 17.85% 3.54 0.4397 0.4396 0.37% ± 17.85% 3.54 0.377 0.4396 0.37% ± 12.87% 3.51 31.04 0.4752 11.73% ± 3.84% 3.51 0.327 0.4397 0.4397 1.45% 3.52 0.531		399 Reservation Ro			4300	
Model #: F13 Fluid Type: Curve 1 Collibration Ronge: 0 500.00 MSCFD June October CSV Error Fox Specification MSCFD MSCFD VOLTS # Reading % Reading 0.00 0.00 0.2528 0.00% ± 70.21% 3.04 2.52 0.3388 17.29% ± 33.86% 5.33 5.87 0.3702 0.97% ± 17.17% 13.83 13.74 0.4136 10.47% ± 8.52% 23.86% 5.33 5.17 0.3702 0.97% ± 12.17% 13.83 13.74 0.4136 10.47% ± 8.52% 5.38% 25.13 43.90 0.4277 0.4934 10.85% ± 3.24% 45.17 40.27 0.4934 10.85% ± 2.27% 72.31 64.59 0.5311 10.67% ± 2.38% 14.45 0.60 0.5621 9.82% ± 2.16% 220.25 195.46 <td>0 1 #</td> <td>AS F</td> <td></td> <td></td> <td></td> <td></td>	0 1 #	AS F				
Fluid type: Curve 1 Collibration Range: 0 to 500.00 MSCFD June October CSV Error Fox Specification 0.00 0.00 0.2558 0.00% 41.94% ± 70.21% 3.04 2.52 0.3368 17.29% ± 33.86% 3.04 2.52 0.3368 17.29% ± 33.86% 3.04 2.52 0.3368 17.29% ± 33.86% 3.04 2.52 0.3368 17.29% ± 33.86% 3.04 2.52 0.3368 17.29% ± 33.86% 3.04 2.52 0.3368 17.29% ± 33.86% 3.04 0.4357 11.19% ± 6.29% ± 6.6% 4.501 0.4356 10.04% ± 8.21% ± 6.6% 55.14 52.01 0.4356 10.9% ± 2.27% 56.17 40.27 0.4354 10.9% ± 2.1% 58.14 52.01 0.536 10.5% ± 2.1%						-
June October CSV Error Fox Specification 0.00 0.00 0.2558 0.00% ± 70.21% 1.44 0.64 0.3070 41.94% ± 70.21% 3.44 0.52 0.3702 0.97% ± 31.85% 3.83 5.87 0.3702 0.97% ± 17.85% 3.89 16.78 0.4377 11.19% ± 8.29% 27.33 24.33 0.4582 10.98% ± 4.66% 45.17 40.27 0.4364 10.85% ± 2.27% 93.16 31.04 0.4752 11.73% ± 3.84% 45.17 40.27 0.4364 10.85% ± 2.17% 93.16 31.04 0.4752 11.73% ± 3.84% 45.17 40.27 0.4364 10.85% ± 2.16% 94.17 76.50 0.5413 10.94% ± 2.16% 10.046 90						
MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2528 0.00% ± 70.21% 1.44 0.84 0.3070 41.94% ± 70.21% 3.04 2.52 0.3782 0.97% ± 17.86% 3.93 5.87 0.3702 0.97% ± 17.86% 1.93 0.4367 0.119% ± 6.5% 27.33 24.33 0.4497 10.95% ± 6.5% 27.33 24.33 0.4497 10.85% ± 2.37% 35.16 31.04 0.4792 11.73% ± 2.87% 45.17 40.27 0.4364 10.65% ± 2.21% 58.14 52.01 0.5168 10.54% ± 2.72% 72.31 64.59 0.511 10.64% ± 2.23% 84.77 75.50 0.5453 19.94% ± 1.87% 100.46 90.60 0.5621 9.82% ± 2.00% 114.85 103.18 0.5766 10.17% ± 1.87% 260.	Calibration Range:	0 to	500.00	MSCFD		_
MSCFD VOLTS % Reading % Reading 0.00 0.00 0.2528 0.00% ± 70.21% 1.44 0.84 0.3070 41.94% ± 70.21% 3.03 2.57 0.3680 17.29% ± 33.86% 3.05 8.59 0.3920 6.30% ± 12.17% 13.12 11.74 0.4136 10.47% ± 8.62% 23.3 24.433 0.4582 10.98% ± 4.66% 35.16 31.04 0.4752 11.73% ± 3.34% 45.17 40.27 0.4351 10.55% ± 3.24% 58.14 52.01 0.5136 10.54% ± 2.23% 94.77 7.550 0.5443 10.94% ± 2.18% 100.46 90.00 0.5621 9.22% ± 1.47% 120.52 19.42% 0.07561 10.18% ± 1.47% 120.62 19.42% 0.07561 11.83% ± 1.97% 120.62 19.42% 0.6640 11.38% ± 1.97%	June	October	CSV	Error	Fox Specification	_
1.44 0.84 0.3070 41.94% ± 70.21% 3.04 2.52 0.3388 17.28% ± 33.86% 5.93 5.87 0.3702 0.97% ± 17.86% 3.12 11.74 0.4136 10.47% ± 8.82% 2.33 2.433 0.4582 10.98% ± 4.66% 2.33 2.433 0.4582 10.98% ± 4.66% 3.51 6 31.04 0.4722 11.73% ± 3.84% 45.17 40.27 0.4304 10.85% ± 3.21% 27.31 64.59 0.3311 10.67% ± 2.38% 47.47 75.50 0.3452 10.94% ± 2.18% 10.465 10.818 0.3626 9.62% ± 2.07% 11.465 10.818 0.3626 9.62% ± 2.18% 11.445 90.80 0.3642 10.94% ± 2.18% 120.25 138.42 0.6461 11.28% ± 1.87% 220.25 138.42 0.6461 11.28% ± 1.45% 220.25 128.27 0.6484 11.38%	MSCFD		VOLTS		% Reading	-
3.04 2.52 0.3388 17.29% ± 33.89% 5.93 5.87 0.3722 0.97% ± 17.89% 8.95 8.39 0.3920 6.30% ± 12.17% 13.12 11.74 0.4136 10.47% ± 6.82% 23.33 24.33 0.4522 10.99% ± 4.66% 35.16 31.04 0.4752 11.73% ± 3.84% 45.17 40.27 0.4934 10.85% ± 3.21% 58.14 52.01 0.5136 10.64% ± 2.23% 72.31 64.59 0.5311 10.67% ± 2.28% 84.77 75.50 0.5453 10.94% ± 2.18% 100.46 90.60 0.5621 9.28% ± 2.00% 114.85 103.18 0.5756 10.16% ± 1.87% 220.25 195.46 0.6461 11.25% ± 1.64% 220.26 195.46 0.6461 11.25% ± 1.43% 220.25 195.46 0.64641 11.25% ± 1.64% 220.25 195.46 0.64641 11.25% ±	0.00	0.00	0.2528	0.00%		
5.93 5.87 0.3702 0.97% ± 17.86% 3.12 11.74 0.4136 10.47% ± 8.62% 27.33 24.33 0.4582 10.98% ± 4.66% 35.16 31.04 0.472 11.73% ± 3.64% 45.17 40.27 0.4934 10.85% ± 3.24% 45.17 40.27 0.4934 10.85% ± 3.24% 72.31 64.59 0.5311 10.67% ± 2.28% 72.31 64.59 0.5311 10.67% ± 2.88% 10.46 90.60 0.5621 9.82% ± 2.00% 114.45 103.18 0.5756 10.16% ± 1.87% 156.02 138.42 0.6071 11.28% ± 1.45% 220.25 195.46 0.6441 11.38% ± 1.45% 220.25 195.46 0.6440 11.38% ± 1.45% 296.28 282.57 0.6840 11.38% ± 1.20% 502.37 442.93 0.7566 11.83% ± 1.20% This calibration is traceable to the National Institinte of Standards in a c						
13.12 11.74 0.4367 11.19% ± 6.62% 27.33 24.33 0.4582 10.98% ± 4.66% 35.16 31.04 0.4752 11.73% ± 3.84% 45.17 40.27 0.4934 10.85% ± 3.24% 72.31 64.59 0.5311 10.67% ± 2.72% 72.31 64.59 0.5311 10.67% ± 2.38% 94.77 75.50 0.5443 10.94% ± 2.18% 100.46 50.60 0.5621 9.82% ± 2.00% 114.85 103.18 0.5756 10.16% ± 1.87% 156.02 133.42 0.6071 11.25% ± 1.45% 220.25 195.46 0.6461 11.35% ± 1.26% 2206.28 262.57 0.6840 11.38% ± 1.20% 502.37 442.93 0.7566 11.83% ± 1.20% 502.37 442.93 0.7566 11.83% ± 1.20% 502.37 442.93 0.7566 11.83% ± 1.20% Prepared By: Octavio Aviio Cal. Equip.	5.93	5.87	0.3702	0.97%	± 17.86%	
27.33 24.33 0.4582 10.98% ± 4.66% 35.16 31.04 0.4752 11.73% ± 3.84% 45.17 40.27 0.4934 10.85% ± 3.21% 58.14 52.01 0.5136 10.54% ± 2.72% 72.31 64.59 0.5311 10.67% ± 2.38% 84.77 75.50 0.5443 10.94% ± 2.18% 100.46 90.60 0.6521 9.82% ± 2.00% 114.85 103.18 0.5766 10.16% ± 1.87% 126.02 138.42 0.6071 11.28% ± 1.64% 226.25 195.46 0.64401 11.28% ± 1.34% 226.23 282.57 0.6840 11.28% ± 1.26% 502.37 442.93 0.7566 11.83% ± 1.20% 502.37 442.93 0.7566 11.83% ± 1.20% 502.37 442.93 0.7566 11.83% ± 1.20% 502.37 442.93 0.7566 11.83% ± 1.20% the main measumements traceable to NIST Standards and reclosegy to	13.12	11.74	0.4136	10.47%	± 8.62%	
45.17 40.27 0.4934 10.65% ± 3.21% 58.14 52.01 0.5136 10.54% ± 2.27% 72.31 64.59 0.5311 10.67% ± 2.38% 94.77 75.50 0.5453 10.94% ± 2.18% 100.46 90.80 0.5621 9.82% ± 2.00% 114.85 10.318 0.5756 10.16% ± 1.37% 220.25 195.46 0.6461 11.25% ± 1.64% 2296.28 226.57 0.6840 11.38% ± 1.37% 386.31 338.91 0.7195 12.27% ± 1.26% 502.37 442.93 0.7566 11.83% ± 1.20% This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/1% of reading +/2% of full scale using measurements traceable to NIST Standards Prepared By: Octavio Avila Octavio Avila Octavio Avila Date: Octavio Avila	27.33	24.33	0.4582	10.98%	± 4.66%	
72.31 64.59 0.5311 10.67% ± 2.38% 84.77 75.50 0.5453 9.82% ± 2.00% 114.65 103.18 0.5756 10.16% ± 1.87% 156.02 138.42 0.6071 11.28% ± 1.64% 220.25 195.46 0.6461 11.25% ± 1.45% 226.28 262.57 0.6840 11.35% ± 1.26% 386.31 338.91 0.7195 12.27% ± 1.26% 502.37 442.93 0.7566 11.83% ± 1.20%	45.17	40.27	0.4934	10.85%	± 3.21%	
84.77 75.50 0.5423 10.4% ± 2.18% 100.46 90.60 0.5621 9.82% ± 2.00% 114.85 103.18 0.5756 10.16% ± 1.87% 156.02 138.42 0.6071 11.28% ± 1.64% 220.25 195.46 0.6461 11.25% ± 1.45% 236.628 222.57 0.6840 11.35% ± 1.26% 386.31 338.91 0.7195 12.27% ± 1.26% 502.37 442.93 0.7566 11.63% ± 1.20% This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/-1% of reading +/2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Std-45662A. Prepared By: October 26, 2016 October 26, 2016						0.0
114.85 103.18 0.5756 10.1%% ± 1.87% 156.02 138.42 0.6071 11.28% ± 1.64% 220.25 195.46 0.6461 11.25% ± 1.45% 236.28 222.57 0.6840 11.33% ± 1.26% 336.31 338.91 0.7195 12.27% ± 1.26% 502.37 442.93 0.7566 11.83% ± 1.26% This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/-1% of reading # -2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Stid-45662A Prepared By: Octavio A vila Octavio A vila October 26, 2016		75.50 90.60	0.5453 0.5621	10.94% 9.82%	± 2.18% ± 2.00%	
220.25 195.46 0.6461 11.25% ± 1.45% 286.28 282.57 0.6840 11.33% ± 1.26% 386.31 338.91 0.7195 12.27% ± 1.26% 502.37 442.93 0.7566 11.83% ± 1.20% This calibration is traceable to the National Institute of Standards and Technology io an uncertainty of +/1% of reading +/2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Stid-45662A. Prepared By: October 26, 2016 October 26, 2016	114.85	103.18	0.5756	10.16%	± 1.87%	
386.31 338.91 0.7195 12.27% ± 1.26% 502.37 442.93 0.7566 11.83% ± 1.20% This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/1% of reading +/2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Stid-45662A. Prepared By: Octavio A vila Cal. Equip. No: 2135 Date: October 26, 2016	220.25	195.46	0.6461	11.25%	± 1.45%	
This calibration is traceable to the National Institute of Standards and Technology to an uncertainty of +/1% of realing +/2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Stid-45602A. Prepared By: Octavio Avila Cal. Equip. No: 2135 Date: October 26, 2016	386.31	338.91	0.7195	12.27%	± 1.26%	
+/- 2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Stid-15662A. Prepared By: Octavio Avila Cal. Equip. No: 2135 Date: October 26, 2016	502.57	442.55	0.7500	11.03%	± 1.20%	
*/2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Sid-45662A. Prepared By: Octavio Avila Cal. Equip. No: 2135 Date: October 26, 2016						
+/2% of full scale using measurements traceable to NIST Standards in accordance with Mil-Std-45662A. Prepared By: Octavio Avila Cal. Equip. No: 2135 Date: October 26, 2016						_
Prepared By: Octavio Avila Cal. Equip. No: 2135 Date: October 26, 2016						
Date: October 26, 2016	+/29	e of full scale using measurer	nents traceable to NIS	T Standards in accordance with !	Mil-Std-45662A.	
	+/29	e of full scale using measurer	nents traceable to NIS	T Standards in accordance with !	Mil-Std-45662A.	
12/08/11, AU/CH6						_
12/08/11, A17/CH5	Prepared By:	Octavio /	Vila			
12/08/11, AU/OHS	Prepared By:	Octavio /	Vila			
12/08/11, A17/046	Prepared By:	Octavio /	Vila			
	Prepared By:	Octavio /	Vila		2135	
	Prepared By:	Octavio /	Vila		2135	1, ALT/CHG
	Prepared By:	Octavio /	Vila		2135	1, ALT/CHS
	Prepared By:	Octavio /	Vila		2135	1, AU7/OH6
	Prepared By:	Octavio /	Vila		2135	1, ALT/CHG
	Prepared By:	Octavio /	Vila		2135	1, AU/OH6
	Prepared By:	Octavio /	Vila		2135	1, AU/OH6
	Prepared By:	Octavio /	Vila		2135	1, AU7/OH6
	Prepared By:	Octavio /	Vila		2135	1, AU/OHG
	Prepared By:	Octavio /	Vila		2135	1, ALT/CH6
	Prepared By:	Octavio /	Vila		2135	1, AU7/OH6
	Prepared By:	Octavio /	Vila		2135	1, AIT/CHS

Flow Meter 21776 Certification Documentation, Post-Summer Testing

Coriolis Serial ID 14267449

Micro Motion,	Inc.	Mass Flo	owmeter Calibration (Certificate			14430099
Product Code	Serial ID		Order ID	Line	Item	Customer Tag	
R100SB21NWBAEZZZZ	14430099		10173854	6.1	5		

Process	
Process ID :	7.19664027
Process Time :	2014.07.29 10:17:09
Process Stand :	
Stand Uncertainty :	+/-0.030%
Fluid :	
100% Rate :	272.1554 KG/MIN
Pickoff :	1
100% P/T :	42.14 PSIG/23.4 C
Results	
Status :	PASS
D1 :	0
D2 :	1
K1 :	3646.137
	4320.314
DT :	4.4
FD :	
DTG :	
DFQ1 :	
DFQ2 :	
	268.644.67
FFQ :	
FTG :	
	03646043204.40
	268.64
	4.67
11 -	

CADENA GABRIEL

Technician

Traceable to International Standards. Meter total based on pulse output. Details at www.micromotion.com.

2016.03.30 8:58:04 1/1

Customer: Noble Energy Operator: Noble Energy Location: Other Noble Locations Federal ID: State ID: Division: Area: County: Weld State: CO Legal Desc: Bernhardt

	Meter Data	220		Pro Name Crut	oduct Data			ving Data	<u>Current</u>
	ernhardt J31-			Batch No.	pe				
NOE	3_BH_J31-320)	6	bs. Gravity 42.0	°A PI		Task ID		1457129265
Factor Tracked	Meter Factor(MF)		Obs. Temp 60.0			Date		03/04/2016
Temp Compensate				Obs. Press 0.0 ;	psi		Time		9:07
14.0	100000.0000	N/bbl		API Table Tabl	e A - Crude Oil	(2004)	Product		Crude
Manufacturer			B	ase Density 42.0	°API	HYC Y	Flowrate		10 bbl/hr
Size			L				Totalizer	1	86
Serial No. 1 Model No.					olerances		Throughput		
Model No.	RIUU			anoo iypo.	one				0.000
Master	r Meter Dat	a	Max	imum Deviation:	0.029 %		Base Density		\$2.0 °API
Name	VOL Hank						Avg Prvr Temp		50.2
emp Compensated	No			X Prev Meter Fa		and Deep? N	Avg Prvr Press		5.0
NKF		N/bbl		bled? N X Factor Count :		rod Dep? N			
Manufacturer		n		X Factor Count			Repeatability		0.042 %
Size	1.00 i	n	Cut	Off History? N	Cutoff Date	r.	MF		1.0008
Serial No.	14428325		Prev	Meter Factor De	viation: 0.25		MF Variance		
Certified			Ena	bled? Y	Passed? Y P	Prod Dep? N	Liquid Prop	artice at M	atoring
Meter Factor	1.0034		Prov	ring Mode:	Volumetri	6		ions for CN	
				sity Mode:	Manual				-
			Calc	Method:	Avg. Mete	r Factor	Normal Op. Press		psig
				ring Method:	Manual		Eq. Vapor Press	ure CPL 1.0000	psig
			Pass	ses Per Run	1			PL 1.0000	
	TEMPERAT		PRE Pp	SSURE	PU Np	LSES N	Run Accepted ?	IMF	Flowrate
Run 1	Tp 50.1	Tm 50.3	5.0	5.0	12022.000	12057.000	1 Yes	1.00059	bb//hr 10.2
2	50.1	50.3	5.0	5.0	12005.000	12036.000	2 Yes	1.00092	10.3
3	50.2	50.4	5.0	5.0	12006.000	12040.000	3 Yes	1.00067	10.2
4	50.2	50.4	5.0	5.0	12015.000	12045.000	4 Yes	1.00101	10.2
5	50.2 50.2	50.4 50.4	5.0 5.0	5.0	12015.000 12012.6000	12046.000 12044.8000	5 Yes	1.00093	10.2 10.2
Average					12012.0000			1.00002	10.27
1) GSVp: [N(avg)							itus		
Np(avg) 12012.6000 10	NKFp 0000 0000	/Vp 0.120126		CTLp CPL; 0503 1.00003		0.121145 co	previous provings foun	d for prior devi	ation
							inparioon.		
2) ISVm: [N(avg)	+ NKF = IVm	[CTLm * CF /Vm		CFm] TLm CPU	m CCFm	ISVm			
N(avg) 12044.8000 10		0.120448	-	00493 1.0000		0.121045			
3) Proving Factors	i:			Trans. Serial No.		— <u> </u>			
()	/p +ISVm =	1.0008	MF	Flow Calib Factor		Notes			
(2) (3)	MF * CPL = 1 + MF =	1.0008	CMF MA	Density Calib Fact	or	10.000	ot= 86.4544		
(4)	NKF + MF =	99920	KF	Frequency Set Po	int	End To	t= 88.7708		
1.7	KF + CPL =	99920	CKF	Flowrate Set Point					
(5)									
(5) Repeatability:	0.042 %			Zero Verified As Found	Zeroed As Left				

noble energy

Checklist Measurement Maintenance Process: Witnessing Master Meter Proving

	Bernhardt 31-32		Date: 3-4-16
Prover (Company Name: Volumetrics		
Name o	f Prover Employee Performing Task:	J Yarb	rough
Title of	Prover Employee Performing Task:	asurement	t Tech
Yes/No	Facility Characteristics:	100 X 11 X 100	Meter Prove
00	Any modifications to upstream facilities since last prove		Base Density:
0 8	Any modifications to downstream facilities since last prove		Base density is 42 at 60 F determined by
00	Building condition, heat, and power		5
Yes/No	Physical Piping Characteristics:		Flowing Density: (required only if meter
0 0	Proving connections located downstream of meter Closed Loop System		Flowing Density is H2 at 60° F as
00	Meter and prover bypass valves – double- block and bleed		determined by TU Yar brough
			Temperature and Pressure:
1	Coriolis Meter Installations		Observed Master Meter temperature 50. 3°F
0 0	Meter installed in free standing position		Observed Meter temperature 50.4°F
	and without bind		Observed Master Meter pressure 5.0 PS1 Observed Meter pressure 5.0 PS1
	Turbine Meter Installations	Yes/No	Meter system (instrumentation/flow computer)
NA	Meter installed with adequate upstream and downstream straight lengths	g o Yes/No	CTL and CPL are correct Repeatability:
NA	Upstream obstructions that could interfere with meter operation or cause flow disturbances	Yes/No N/A	Meter proves repeat to <0.05% Reproducibility: Meter proof changes by +0.0025 from last prove
Tes/NO .	FIDWING CONDITIONS:	N/M	and historical meter proves vary by +0.25% for similar compositions and flow rates
0 9	Stable product temperature and pressure		
0 0	Stable flow rate		Totalizer Reading: 86
0	System valves and seals checked to ensure there is no leakage		Meter Factor: 1,000 8
1	Trial runs conducted to evacuate any	Yes/No/NA	Seals in place:
00	air/gas from system	0 0 0	Sample Probe Sampler volume control
0 0	Potential sources of pulsation or vibration	0 0 0	All valves entering or leaving sample pot
1	Potential sources of liquids and solids	0 0 0	Meter assembly(counter head, ATC, ATG)
0 8	contamination	0 0 0	Temperature recorder (if so equipped)
		0 0 0	Back pressure valve
		0 0 0	Any drain valves
		000	Proving Legs, valves, etc.

Ne noble energy	Checklist Measurement Maintenance Process:
	Witnessing Master Meter Unit Proving
Witnessed by (Name of Noble Representative)	: Cody Winberg
Title of Noble Representative: Measurem	ent Tech II
Summary: Pass • Fail	
Provide detailed comments on failed proving/se	ampling events, including follow-up with Corporate Measuremen

Coriolis Serial ID 14430099

FLOW MANAGEMENT DEVICES, LLC 5225 5. 37th 52. Phone (602)233-6885 - Fax (602)233-6885 - Website: www.FlowMD.com

ISO/IEC 17025 2005 Accredited Accreditation # 73638

PACH

Gravimetric Waterdraw Certificate

Customer :	VOLUMETRICS			Job Number : 0	
	VLMTRCS179		Prove	r Serial Number : 0	00480
Model Number :	H44007(RL)1A4S1A	WWCS	Pro	ver Tag Number: N	i/A
	WI 7.5.1-1; 000-1006		CECON	DARY VOI	TIME
	October 16, 2015		SECO	UDARI VUI	LUMIE
Compressibility factor for water (°F/psig)	3.2E-06	Area 1	bermal Expansion	Coefficient (Ga)	1.92E-05
Elevation (ft)		Detector '	Thermal Expansio	n Coefficient (GI)	9.60E-06
Standard Temperature (*F)	60.0	М	lodulus of Elastici	ty (flow tube) (E)	2.80E+07
Standard Pressure (psig)	0.0	Flow	Tube Inside Dian	eter (inches) (ID)	9.650
Field Test Weight Density (gm/cc)	and the second se	Flow	Tube Wall Thickn	ess (inches) (WT)	0.89
Reference Test Weight density (gm/cc)	and the second se		Conducti	vity Reading (uS)	7
					Fill
	Fill	Fill	Fill	Fill	5
Collected Data	1	2	3	4	
Run Time (sec)	and the second se	86	57	88	56
Apparent Mass of Water (Ww) (gm)		15136.6	15137.2	15136.2	15137.1
Air Temperature ("F)		73.9	73.5	73.5	74.1
Detector Bar Temperature (Td) (°F)		74.5	74.4	74.4	74.3
Prover Temperature (Tp) (°F)		73.6	73.6	73.6	73.7
Prover pressure (Pp) (paig)		18.0	18.0	18.0	18.0
Corrected Encoder Count (3t) [V2-V3]		0.0	0.0	0.0	0.0
		ated Densities			
Density of Air (DENs) (gm/cc)		0.001148	0.001149	0.001149	0.001148
Water Density (RHOw) (gm/cc)		0.997513	0.997513	0.997513	0.997500
		e Calculation			
True Mass of Water (Mw) (gm)		15151.826	15152.438	15151.437	15152.321
Volume of Water (Vw) (ml)		15189.597	15190.211	15189.207	15190.295
		s to Standard Conc			
Effect of Press. on Water (CPLp)		1.000058	1.000058	1.000058	1.000058
Temp. correction CTS for SVP	1.000398	1.000400	1.000399	1.000399	1.000400
Pressure correction CPS for SVP	1.000007	1.000007	1.000007	1.000007	1.000007
Combined Correction Factor (CCF)	1.000463	1.000465	1.000464	1.000464	1.000465
		ated Volume			
Volume at Standard Conditions (mL)	and the second se	15182.537	15183.166	15182.162	15183.235
	Calcula	ted Devistion			
Run percent deviation from average	0.0030%	-0.0023%	0.0018%	-0.0048%	0.0023%

	15182.889	ml	1.906692	
	15.182889	Liters	0.001907]
Average Volume at Standard Conditions	0.0151829	Cubic meters	0.000002	Expanded
Average volume at Standard Conditions	4.01089	Gallons	0.000504	uncertainty by unit of measure
	0.0954975	Barrels	0.000012	unit of measure
	926.52	Cubic Inches	0.116354	
Repeatability	0.00780%			Expanded
Laboratory Room Temperature	73.9	Ambient (F)	0.0126%	uncertainty
Laboratory Room Relative Humidity	35.0	% (rh)	1	expressed in
Laboratory Room Barometric Pressure	727.0	mm/Hg	1	percentage

Combined uncertainty for this calibration is the sum of Calibration Measurement Capability (CMC) and the uncartainty of volume. CMC is based on the accuracy of the measurement exploment used during the prover calibration. Uncertainty of volume is based on the deviation of the first initiadidual runs performed on this poper calibration. This combined exercisinty in them multiplied by it, coverage factor of 2 to give the expanded uncertainty which defines an interval with an approximate 355 confidence level. Calibration standards used are traceability used in referencing measurement traceability for artifacts allocated in an interval with a start of the start and an interval and an effect on the start of the start of the start of the first of the start of the start of the first of the start of the provide start of the s

Performed By: 10 1 Witnessed: RA Quality: Ofulin

Date: 10, 16-15 For: Dolumetures

	NIST TRA
Alr Temperature Thormometer :	1024
Switch Bar Temperature Thermometer :	1077
Prover Temperature Thermometer :	1097
Mechanical Pressure Gauge :	E196203
Pi Tape :	101410128
LD. Gauge :	946368018683
Conductivity Meter Test Fluid :	CDSA-45
Encoder : 1: 000-101790-DOC REV E	N/A

BLE INSTRUMENTS USED Test Weights : Test Weights : Test Weights : 80437 80438 80439 80440 0

F 7.5.1-7 Water Draw Data Collection Gravimetric Water Draw Data Collection Form Rel. Humidity 35% Test Date 10/16/2015 Witness Name RAIG COOK Technician Name Scott Paradia Customer Name Volumetrics Elevation 1/25 Conductivity Calibration 002331-0001 Sales order # HYY007 (RL) IAYSI AA WWCS COSA-45 Serial # Model # **Barometric Pressure Primary Volume** Conductivity 7 Run 1 Fast Run 3 Fast Run 4 Slow Run 5 Fast Run 2 Slow 68 Run Time 98 64 65 104 Apparent Mass of Water 18869.4 74.1 74.4 73.3 18870,7 18870.4 18870,8 18869,5 74.6 73.6 Air temperature 74.0 73.3 Detector Bar Temperature 74.4 4.4 73. Prover Temperature 73,2 73.4 Prover Pressure 18 18 18 18 18 Encoder Counts Secondary Volume Conductivity Run 1 Fast Run 2 Slow Run 3 Fast **Run 4 Slow** Run 5 Fast Run Time 5 88 57 56 86 15137.**11** 74.1 74.3 Apparent Mass of Water 15136.6 73.9 74.5 73.6 15136.2 15137.6 15137,2 Air temperature Detector Bar Temperate 74.5 74.4 74,4 Prover Temperature 73.6 7. 3,5 73.6 73,7 Prover Pressure 18 18 18 18 18 Encoder Counts

 Encoder Counts

 Witness Signature
 Date
 10/16/15
 Thermometers SWB
 1072
 Prover
 1092
 Ambient
 1024

 Technician Signature
 Date
 10/16/15
 Pressure Gage
 E/96203
 Hygrometer
 122/6/022
 Barometer
 11/576215

 Quality Signature
 Date
 10/16/15
 Conductivity Meter
 41/9642
 Test Weights
 80/437
 80/439
 80/490

 Doc # 000-104614-DOC
 Rev D
 Release Date
 09/11/2015
 Encoder
 10/16/15

Rev D Release Date 09/11/2015 5225 S. 37th St. Phoenix, AZ 85040- Tel: 602-233-9885 Fax: 602-233-9887

1 of 2 | Page

F 7.5.1-7 Water Draw Data Collection

n

API SECTION NUMBER	API SECTION TITLE	FMD SECTION NUMBER	DESCRIPTION	Verified	Customer Initials	Lab Tech Initials	Comments
5.2.2	Calibration Records	7.2.1	Verify hand written records match data entered	B	CHE	a	
			Verify Data on Water Draw Cert	~	(
5.2.6.2	Weigh Scale	6.2.3	Level Empty				
		2	Level Full				
			Protected from Elements				
			Container is large enough to hold volume				
			Weigh Scale verification with in +/-0.0025%				
5.2.6.3	Test Weights	5.1.3	Verify that they have been certified in the past 3 years				
			Are ASTM Class 1, 2, 3, or 4				
			Test Weight Tolerance +/- 0.002%				
5.2.6.5	2.6.5 Weight Scale	6.2.3	Two Calibration verification				
	Verification		Test weights within +/- 20% of Total Mass				
			Mass Indication 0.005%				
5.2.6.6	Draining the Container	7.11 & 7.13	The container is completely drained				
5.2.6.7	Taring/Zeroing	7.18	The scale has been Tared/Zeroed		(
5.2.7.2	Water Quality	6.2.2	Water conductivity is <50 microseimens				
5.2.8	Bleed Air	7.4	Verify there is no air in system				
5.2.9	Flow Rate	4.2	Verify that flow rate changed by 25% between runs				
5.2.10	Calibration Runs	7.20	5 consecutive runs pass				
6.2	Calibration	5.1.2	Thermometer are calibrated within 0.2 F (0.1 C)				
	Preparation	5.1.1	Pressure Gage calibrated accurate to 1psig	B	1	PA -	
	1	A.2	All piping, flanges and closed valves are leak free	1151	Cal	OF	

Witness Signature Ing lich Date 10.16.15 Date 10/16/2015

Doc # 000-104614-DOC Rev D Release Date 09/11/2015 5225 S. 37th St. Phoenix, AZ 85040- Tel: 602-233-9885 Fax: 602-233-9887

2 of 2 | Page

Technician Signature

Volumetrics Water Draw Volumetrics Water Draw

FLOW MANAGEMENT DEVICES, LLC 52255 37m 51. Prosenta, AZ 80340 · Floore (6/02)233-9885 · Fas (6/02)233-9887 · Website: www.FlowAD com

Gravimetric Waterdraw Certificate

Customer : W		Job Number :	002331-0001		
P.O. # : VI	Prover	Serial Number :	000480		
Model Number : H	Prov	er Tag Number:	N/A		
Test Procedure : W	T 7.5.1-1; 000-100663-	DOC	DDD	ARY VOL	LIBAIR
Test Date : Or	ctober 16, 2015		PKIN	IART VOL	UNIE
Compressibility factor for water (°F/psig)	3.2E-06	Ares T	hermal Expansion	Coefficient (Ga)	1.92E-05
Elevation (ft)	1125	Detector T	bermal Expansion	n Coefficient (Gl)	9.60E-06
Standard Temperature (°F)	60.0	м	odulus of Elastici	ty (flow tube) (E)	2.80E+07
Standard Pressure (prig)	0.0	Flow	Tube Inside Diam	eter (inches) (ID)	9.650
Field Test Weight Density (gm/cc)	7,84	Flow 7	Tube Wall Thickn	ess (inches) (WT)	0.89
Reference Test Weight density (gm/cc)	7.84		Conducti	vity Reading (uS)	7
Collected Data	Fill	Fill	Fill	Fill	Fill
Collected Data	1	2	3	4	5
Run Time (sec)	64	98	65	104	68
Apparent Mass of Water (Ww) (gm)	18870.8	18869.5	18870.7	18869.4	18870.4
Air Temperature (°F)	74.0	73.3	73.6	74.1	74.6
Detector Bar Temperature (Td) (°F)	74.5	74.4	74.4	74.4	74.4
Prover Temperature (Tp) (*P)	73.2	73.2	73.3	73.3	73.4
Prover pressure (Pp) (psig)	18.0	18.0	18.0	18.0	18.0
Corrected Encoder Count (11) [V1-V3]	0.0	0.0	0.0	0.0	0,0
	Calculate 0,001148	d Densities			
Density of Air (DENa) (gm/oc)	0,001150	0.001149	0.001148	0.001147	
Water Density (RHOw) (gm/cc)	0.997566	0.997566	0.997553	0.997553	0.997540
		Celculation			
True Mass of Water (Mw) (gm)	18889.777	18888.501	18889.691	18888.372	18889.356
Volume of Water (Vw) (ml)	18935.867	18934.587	18936.030	18934.708	18935.943
	Correction Factors a				
Effect of Press. on Water (CPLp)	1.000058	1.000058	1.000058	1.000058	1.000058
Temp. correction CTS for SVP	1.000393	1.000392	1.000394	1,000394	1.000396
Pressure correction CPS for SVP	1.000007	1.000007	1.000007	1.000007	1.000007
Combined Correction Factor (CCF)	1.000458	1.000457	1.000459	1.000459	1.000461
	Calculate	ed Volume	- Summer	an income and the second	
Volume at Standard Conditions (mL)	18927.198	18925.938	18927.342	18926.021	18927.218
	Calculate	d Deviation			
Run percent deviation from average	0.0024%	-0.004395	0.0032%	-0.0038%	0.0025%
		18926.743		2.269543	
	-	18926.743		2.269543	
			Cubic meters	0.002270	Expanded
Average Volume at S	tandard Conditions		Cubic meters Gallons	0.000002	uncertainty by
		0.1190456		0.000000	unit of measur
			Cubic Inches	0.138496	

Expand 0.0120% Lab Ambient (F) 35.0 % (rh) mm / Hg expre 727.0 ed on the act n is the sum of Cali

rement Capability (CMC) and the uncertainty of volume. CMC is ba-ity of volume is based on the deviation of the fise individual russ pu-siter of 2 to give the expanded uncertainty which defines an inter-suph approved accredited laboratories (reports on file). The purch ts perfe d by K, ar al with an ap

10 Dates 16:15 For: L alume forcs

NIST TRACEABLE INSTRUMENTS USED

Air Temperature Thermometer :	1624	Test Weights :	80437
Switch Bar Temperature Thermometer :	1077	Test Weights :	80438
Prover Temperature Thermometer :	1097	Test Weights :	80435
Mechanical Pressure Gauge :	E196203	Test Weights :	80440
Pi Tape :	101410128	Test Weights :	0
LD. Gauge :	946368018683	Test Weights :	0
Conductivity Meter Test Fluid :	CDSA-45	Test Weights :	0
Encoder :	N/A	Test Weights :	0

Volumetrics Water Draw Volumetrics Water Draw

Division: Area: County: State: CO Legal Desc:

	er Data . Hank	Name	Product Data Crude			Proving Data	Current
MAS	TER_7	Batch No.			Task ID	1456968163	1456969017
Factor Tracked Mete	er Factor(MF)	Obs. Gravity			Date	03/02/2016	03/02/2016
Temp Compensated No		Obs. Temp Obs. Press			Time	12:22	12:36
NKF 100			Table A - Crude Oi	(2004)	Product		Crude
Manufacturer Micr	oMotion	Base Density		HYC Y	Flowrate		5 bbl/hr
Size 1.00		_			Totalizer		5747
Serial No. 1442			Tolerances				
Model No. F10	0	Tolerance Type:	Repeatability		Throughput		2
Brown	r Data	Maximum Devia	tion: 0.050 %		Base Density	45.2°API	45.2 °API
Prove	r Data	Enabled? Y	Passed? Y Min		Switch Bar Temp	62.2	63.1
BPV 0.	.119046 bbl	-	ut of 5 consecutiv	e runs	Avg Prvr Temp	70.4	71.8
I.D. 9.	.650 in	2	er Factor Deviation:		Avg Prvr Press		21.2
W.T. 0.	.890 in	Enabled? N Prev X Factor Co	Passed? Y I	Prod Dep? N	<u> </u>		
	low MD	Prev X Factor Co	5		Repeatability		0.019 %
Type D	isplacement-Piston	Cut Off History?		e:		1.0034	1.0045
Serial No. 48	80	Prev Meter Fact	or Deviation:		MF Variance	0.0004	0.0011
Elasticity 2.	.8E7 1/psi	Enabled? N	Passed? Y	Prod Dep? N	Liquid F	Proportion of N	lataring
		Proving Mode:	Volumetr	c		Properties at N nditions for C	•
Pipe Ga 1	.92E-5 1/°F	Density Mode:	Manual	-			
External Shaft GI 9.	.6E-6 1/°F	Calc. Method:	Avg. Data	Factor	Normal Op.		psig
Certified		Proving Method:			Eq. Vapor		psig
		Passes Per Run	1			CPL 1.0000	
TEN Run T	PERATURE	PRESSURE Pp Pm	PULSES	Run Accepted	? IMF		Flowrate
	1.7 73.6	21.2 21.2	11864.630	1 Yes	1.00466		bbl/hr 5.173
2 7	1.6 73.6	21.2 21.2	11865.044	2 Yes	1.00468		5.167
	1.7 73.6	21.2 21.2	11866.888	3 Yes	1.00446		E 400
4 7							5.168
	1.8 73.6	21.2 21.2	11866.642	4 Yes	1.00446		5.166
5 72	2.1 73.6	21.1 21.1	11864.698	4 Yes 5 Yes	1.00446 1.00446		5.166 5.157
5 72 Average 7	2.1 73.6 1.8 73.6	21.1 21.1 21.2 21.2			1.00446		5.166
5 72 Average 74 (1) GSVp: BPV * [CTS	2.1 73.6 1.8 73.6 p * CPSp * CTLp * C	21.1 21.1 21.2 21.2 PLp = CCFp]	11864.698 11865.5804	5 Yes	1.00446 1.00446		5.166 5.157
5 72 Average 7* (1) GSVp: BPV * [CTS BVV	2.1 73.6 1.8 73.6	21.1 21.1 21.2 21.2 PLp = CCFp]	11864.698		1.00446 1.00446		5.166 5.157
5 72 <u>Average</u> 72 (1) GSVp: BPV * [CTS B ¹⁷ √ 0.119046 1. (2) ISVm: [N(avg) ÷ N	2.1 73.6 1.8 73.6 p* CPSp * CTLp * C CTSp CPSp .00026 1.0000 IKF = IVm] * [CTLm	21.1 21.1 21.2 21.2 PLp = CCFp] C1Lp 1 0.99370 1.0 * CPLm = CCFm]	11864.698 11865.5804 <i>CI⁺Lp CC</i> + <i>p</i> 00013 0.99410	5 Yes GSVp 0.118344	1.00446 1.00446		5.166 5.157
5 72 Average 72 (1) GSVp: BPV * [CTS BYV 0.119046 1.	2.1 73.6 1.8 73.6 p*CPSp*CTLp*C C1Sp C1'Sp 00026 1.0000 IKF = IVm]*[CTLm NKF IVm	21.1 21.1 21.2 21.2 PLp = CCFp] CILp 1 0.99370 1.0 * CPLm = CCFm] CILm	11864.698 11865.5804 Сг²⊥р СС+р	5 Yes GSVp	1.00446 1.00446		5.166 5.157
$5 72$ Average 71 (1) GSVp: BPV*[CTS BVV 0.119046 1. (2) ISVm: [N(avg) \div N N(avg) 11865.5804 100000 (3) Proving Factors:	2.1 73.6 1.8 73.6 p*CPSp*CTLp*C C1Sp C1Sp 00026 1.0000 KF = IVm]*[CTLm NKC IVm 0.0000 0.1186	21.1 21.1 21.2 21.2 PLp = CCFp] C1Lp 1 0.99370 1.0 * CPLm = CCFm] C1Lm 56 0.99273 1.	11864.698 11865.5804 Cl ² Lp CC⊢p 00013 0.99410 Cl ² Lm CC⊢m 00013 0.99286	5 Yes GSVp 0.118344 /SVm	1.00446 1.00446		5.166 5.157
5 7: <u>Average</u> 7 ⁻¹ (1) GSVp: BPV * [CTS B ^{1/V} 0.119046 1. (2) ISVm: [N(avg) ÷ N N(avg) 11865.5804 100000 (3) Proving Factors: >>>> (1) GSVp =	2.1 73.6 1.8 73.6 p*CPSp*CTLp*C C1Sp C1/Sp 00026 1.0000 IKF = IVm]*[CTLm NKF IVm] *[CTLm NKF IVm] * [CTLm NKF IVm] * [CTLm NKF IVm] * [CTLm	21.1 21.1 21.2 21.2 PLp = CCFp] CILp 1 0.99370 1.0 * CPLm = CCFm] CILm 56 0.99273 1. 56 MF Trans. Serial Flow Calls F	11864.698 11865.5804 Cl ² Lp CC⊢p 00013 0.99410 Cl ² Lm CC⊢m 00013 0.99286 INO.	5 Yes GSVp 0.118344 /SVm	1.00446 1.00446		5.166 5.157
5 7: <u>Average</u> 7 ⁻ (1) GSVp: BPV*[CTS B ^{NV} 0.119046 1. (2) ISVm: [N(avg) ÷ N N(avg) 11865.5804 100000 (3) Proving Factors: >>>> (1) GSVp ≠ (2) MF	2.1 73.6 1.8 73.6 p * CPSp * CTLp * C C1Sp C1'Sp 0.00026 1.0000 IKF = IVm] * [CTLm NK⊢ IVm 0.0000 0.1186 ↔ ISVm = 1.004 ↔ CPL = 1.004	21.1 21.1 21.2 21.2 PLp = CCFp] C1Lp 1 0.99370 1.0 * CPLm = CCFm] C1Lm 56 0.99273 1. 5 MF 5 CMF 5 CMF 5 CMF Density Calls	11864.698 11865.5804 CI*Lp CC⊢p 00013 0.99410 CI*Lm CC⊢m 000013 0.99286 I No. actor	5 Yes GSVp 0.118344 /SVm	1.00446 1.00446		5.166 5.157
5 7: <u>Average</u> 7 ⁻ (1) GSVp: BPV*[CTS B ¹⁰ V 0.119046 1. (2) ISVm: [N(avg)÷ N N(avg) 11865.5804 100000 (3) Proving Factors: >>>> (1) GSVp ≠ (2) MF (3) 7 ⁻	2.1 73.6 1.8 73.6 1.8 73.6 1.8 73.6 1.00026 1.0000 1.00000 0.1186 1.0000 0.1186 1.0000 0.1186 1.004 1.00	21.1 21.1 21.2 21.2 PLp = CCFp] <i>CILp</i> 1 0.99370 1.0 * CPLm = CCFm] <i>CILm</i> 56 0.99273 1. 56 MF 5 CMF 5 CMF 5 MA	11864.698 11865.5804 Cl ² Lp CC⊢p 00013 0.99410 Cl ² Lm CC⊢m 00013 0.99286 I No. sctor b Factor	5 Yes GSVp 0.118344 /SVm	1.00446 1.00446		5.166 5.157
5 72 Average 7 ⁴ (1) GSVp: BPV*[CTS B ¹⁷ V 0.119046 1. (2) ISVm: [N(avg) ÷ N N(avg) 11865.5804 100000 (3) Proving Factors: >>>> (1) GSVp = (2) MF (3) ~ (4) NKF	2.1 73.6 1.8 73.6 p * CPSp * CTLp * C C1Sp C1'Sp 0.00026 1.0000 IKF = IVm] * [CTLm NK⊢ IVm 0.0000 0.1186 ↔ ISVm = 1.004 ↔ CPL = 1.004	21.1 21.1 21.2 21.2 PLp = CCFp] <i>C1Lp</i> 1 0.99370 1.0 * CPLm = CCFm] <i>C1Lm</i> 56 0.99273 1. 56 MF 5 MF 5 MA 2 KF Flowrate Set	11864.698 11865.5804 CI ⁺ Lp CC+p 00013 0.99410 CI ⁺ Lm CC+m 00013 0.99286 INo. actor b Factor Feint IPoint	5 Yes GSVp 0.118344 /SVm	1.00446 1.00446		5.166 5.157
5 7: <u>Average</u> 7 ⁻ (1) GSVp: BPV*[CTS B ¹⁰ V 0.119046 1. (2) ISVm: [N(avg) ÷ N N(avg) 11865.5804 100000 (3) Proving Factors: >>>> (1) GSVp = (2) MF (3) - (4) NKF	2.1 73.6 1.8 73.6 7.50	21.1 21.1 21.2 21.2 CILp 0.99370 1 0.99370 * CPLm = CCFm] CILm 56 0.99273 5 MF 5 MF 5 MA 2 KF	11864.698 11865.5804 CI ⁺ Lp CC+p 00013 0.99410 CI ⁺ Lm CC+m 00013 0.99286 INo. actor b Factor Feint IPoint	5 Yes GSVp 0.118344 /SVm	1.00446 1.00446		5.166 5.157

Customer: Volumet Operator: Volumet			Divis Area:						45	AE.	
Location: Volumet	,		Cour						12		
Federal ID:	iod, inc		State	-					Malin		_
State ID:				Desc:					νοιυπ	η ετρις	5
									measurement engi	ineering consult	ting
Ν	Aeter Data	a			Prod	uct Data				Proving Da	
	VOL Hank				e Crude					Previous	Current
	MASTER_7			Batch N					Task ID	1456967615	1456968163
Factor Tracked	Meter Facto	or(MF)		Obs. Gravi Obs. Terr	iy 45.2°A № 60.0°F				Date	03/02/2016	03/02/2016
Temp Compensate	d No				¢ 60.0 - F S 0.0 psi				Time	12:13	12:22
	100000.000					- Crude Oil	(2004)		Product	Crude	Crude
Manufacturer	MicroMotio	n	E	ase Densi				CY O	Flowrate	13 bbl/hr	8 bbl/hr
Size		n							Totalizer		5745
Serial No.					Tole	rances					
Model No.	F100		Tol	erance Typ	e: Rep	eatability			Throughput		-998
D	over Data			ximum Dev					Base Density	45.2°API	45.2 °API
Pro	over Data			abled? Y		d? Y Min #		s: 5	Switch Bar Temp	61.6	62.2
BPV	0.119046	bbl	- H			consecutive r Deviation:	a runs		Avg Prvr Temp	69.7	70.4
I.D		in		abled? N		ssed? Y P	rod Dep	? N	Avg Prvr Press	20.0	20.9
	0.890	in		v X Factor	Count Sou	ught: 1	-		Repeatability	0.020 %	0.035 %
Manufacture				v X Factor					MF	1.0030	1.0034
Туре		ment-Piston		Off Histor	, 	Cutoff Date			MF Variance		0.0004
Serial No		4/0-1		v Meter Fa			and D				
Elasticity	2.0E/	1/psi	En	abled? N	Pas		rod Dep	77 IN	Liquid F	Properties a	t Metering
Pine G	1.92E-5	1/°F		ving Mode		Volumetrie Manual	•		Co	nditions for	CMF
External Shaft G		1/°F		nsity Mode. c. Method:		Manual Avg. Data	Factor		Normal Op.	Pressure	psig
Certified				ving Method.		PIU	i dotoi		Eq. Vapor	Pressure	psig
00111100				ses Per R		1				CPL 1.000	00
Run	TEMPERAT	URE Tm	PRESSI Pp	JRE Pm	PU	LSES	Bun A	ccepted	? IMF		Flowrate
1	Tp 70.3	71.8	20.8	20.8	1187	4.452	1	Yes	1.00358		bbl/hr 8.231
2	70.3	71.8	20.9	20.9		7.143	2	Yes	1.00335		8.234
3	70.3	71.8	20.9	20.9		7.823	3	Yes	1.00330		8.224
4	70.5	71.8	20.9	20.9		76.083	4	Yes	1.00333		8.225
5	70.7 70.4	71.8 71.8	20.9 20.9	20.9 20.9		73.681 5.8364	5	Yes	1.00344 1.00340		8.221 8.227
Average (1) GSVp: BPV * [11073				1.00340		0.227
B/V	C/Sp	CI'Sp	_p = 00	CILp	CI'Lp	CC⊢p		GSVp			
0.119046	1.00022	1.00001	0.9		1.00013	0.99481		8428			
(2) ISVm: [N(avg)	÷ NKF = IV	m] * [CTLm * (
N(avg) 11875.8364 10	NK⊢ 0000.0000	IVm 0.118758		99370	CPLm 1.00013	CC⊢m 0.99383		Vm 8025			
(3) Proving Factors	s:							-			
	/p ÷ISVm		MF	Trans. Se Flow Call							
(2)	MF * CPL		CM		allb Factor						
(3)	1÷MF		MA	-							
(4)	NKF ÷ MF KF ÷ CPL		KF CKF		y Set Point Set Point						
(5)								1			
(5) Repeatability:	0.035 %		UKr	Zero Verif As Found		Zeroed As Left					

Division: Area: County: State: CO Legal Desc:

м	eter Data	9			Prod	uct Dat	a			Proving Data	a
v	OL Hank			Nar	me Crude					Previous	Current
м	ASTER_7			Batch N	Vo.				Task ID	1456967370	1456967615
				Obs. Grav	ity 45.2 °A	PI				03/02/2016	03/02/2016
Factor Tracked N		or(IVIF)		Obs. Ter	mp 60.0 °F				2010		
Temp Compensated		0 N/bbl		Obs. Pre	ess 0.0 psi	1			Time	12:09	12:13
10.0	0000.000				ble Table A				Product	Crude	Crude
Manufacturer M Size 1		n		Base Dens	sity 45.2 °A	PI	ŀ	IYC Y	Flowrate	26 bbl/hr	13 bbl/hr
Serial No. 1		n	Ļ						Totalizer	5741	6743
Model No.				Tolerance Tv		erances			Throughput	8	1002
_			\neg	Maximum De					Base Density	45.2°API	45.2 °API
Pro	ver Data			Enabled? Y Criteria: 5			lin # of Ru	ns: 5	Switch Bar Temp	61.1	61.6
BPV	0.119046	bbl	ł	Avg X Prev M					Avg Prvr Temp	69.1	69.7
I.D.		in		Enabled?			Prod De	ap? N	Avg Prvr Press	44.6	20.0
	0.890	in		Prev X Facto		9			Repeatability	0.042 %	0.020 %
Manufacturer				Prev X Facto					MF	1.0022	1.0030
Туре	•	nent-Piston	F	Cut Off Histo	ry? N	Cutoff I	Date:		MF Variance	0 0007	0.0008
Serial No.				Prev Meter F						0.0007	0.0000
Elasticity	2.8E7	1/psi		Enabled? N	Pa	ssed? Y	Prod De	ap? N	Liquid I	Properties at	Metering
	4 005 5	1/ºF		Proving Mod	е:	Volum			Co	nditions for	CMF
	1.92E-5			Density Mode		Manua	-		Normal Op.	Proceuro	psia
External Shaft GI	9.6E-6	1/ºF		Calc. Method			ata Facto	r	Eq. Vapor		psig
Certified				Proving Meth		PIU			Eq. vapor	CPL 1.0000	1 0
				Passes Per F		1				012 1.0000	
Run	TEMPERAT	URE Tm		ESSURE Pm	PU	ILSES	Burn	Accepted	? IMF		Flowrate
1 Kun	Tp 69.3	1m 71.9	Pp 20		140	N 84.020	Run /	Accepted Yes	7 IMF 1.00334		bbl/hr 12.953
2	69.5	71.9	20.			84.020 84.639	2	Yes	1.00334		12.953
3	69.8	71.6	20.			85.286	3	Yes	1.00320		12.925
4	69.9	71.6	19.			84.154	4	Yes	1.00286		12.870
5	70.0	71.6	20.	0 20.0	118	82.897	5	Yes	1.00291		12.858
Average	69.7	71.7	20.	.0 20.0	11884	4.1992			1.00303		12.906
1) GSVp: BPV * [C	TSp * CPS	p * CTLp * CF	PLp	= CCFp]							
BIV	CISp	CPSp		CILp	CIPLp	CC+µ		GSVp			
0.119046	1.00020	1.00001		0.99482	1.00012	0.99515	0.1	18469			
2) ISVm: [N(avg)-	÷ NKF = IV	m] * [CTLm *	CPL								
N(avg)	NKF 1000.0000	IVm 0.11884		C1Lm 0.99375	CPLm 1.00012	CC⊢m 0.9938		ISVm 118113			

(3) Pro	ving Fa	ctors:					
Repea	(1) (2) (3) (4) (5) tability: tability:	GSVp ÷ ISVm = MF * CPL = 1÷ MF = NKF÷ MF = KF÷ CPL = 0.020 % 0.028 %	1.0030 1.0030 0.9970 99701 99701	MF CMF MA KF CKF	Trans. Serial No. Flow Callb Factor Density Callb Factor Frequency Set Point Flowrate Set Point Zero Vertfied As Found	Zeroed As Left	

Division: Area: County: State: CO Legal Desc:

M	leter Data				Prod	uct Data				Proving Da	
v	OL Hank				e Crude					Previous	Current
м	ASTER_7			Batch No					Task ID	1456966575	1456967370
Factor Tracked	Aeter Factor	(MF)	0	bs. Gravit		PI			Date	03/02/2016	03/02/2016
Temp Compensated		. ,		Obs. Tem					Timo	11:56	12:09
	100000.0000	N/bbl		Obs. Pres		- Crude Oi	(2004)		Product		Crude
Manufacturer N	licroMotion		B	ase Densit				CY			26 bbl/hr
Size	1.00 in	1			,					37 bbl/hr	
Serial No. 1	4428325				Tole	rances			Totalizer		5741
Model No.	F100		Tole	rance Typ		eatability			Throughput	5	8
				imum Dev	-	050 %			Base Density	45.2°API	45.2 °API
Pro	over Data		Ena	bled? Y	Passe	d? Y Min	# of Runs	: 5	Switch Bar Temp	60.6	61.1
PDV	0.119046	bbl	Crite	aría: 5	out of 5	consecutiv	e runs				
	9.650	in	Avg	X Prev Me	eter Facto	r Deviation:			Avg Prvr Temp		69.1
	9.650	in in		bled? N		ssed? Y	Prod Dep	? N	Avg Prvr Press	46.8	44.6
		in		X Factor		5			Repeatability	0.012 %	0.042 %
Manufacturer	Displacem	ont Distor		V X Factor Off History		ed: 0 Cutoff Dat	o'		MF	1.0015	1.0022
	-	ent-Piston					σ.		MF Variance	-0.0003	0.0007
Serial No.		1/psi		/ Meter Fa bled? N			Prod Dep	2 N			
Elasticity	2.001	ilpsi						i N		Properties a	•
Dina Ca	1.92E-5	1/°F		ing Mode:		Volumetr	ic		Co	nditions fo	r CMF
External Shaft Gi		1/°F		sity Mode:		Manual Avg. Data	Factor		Normal Op.	Pressure	psig
External Shart Gr Certified		0.6		:. Method: ving Metho	<i></i>	PIU	Factor		Eg. Vapor	Pressure	psig
Centined				ses Per Ru		1				CPL 1.00	00
	TEMPERATU		PRESSU			LSES					Flowrate
Run		Tm	Pp	Pm	PU	N	Run Ad	cepted	? IMF		bbl/hr
1		70.4	44.6	44.6		38.432	1	Yes	1.00237		26.268
2	00.0	70.4	44.5	44.5		88.064	2	Yes	1.00235		26.241
3 4		70.4 70.4	44.5 44.6	44.5 44.6		37.330 32.303	3 4	Yes Yes	1.00237 1.00194		26.247 26.258
4		70.4	44.6	44.6		2.303 2.329	4	Yes	1.00194		26.258
Average		70.4	44.6	44.6		.6916	0	100	1.00218		26.252
(1) GSVp: BPV * [C BPV	CISD CISD	CPSD	-	CILD	CIPLD	CCFD		GSVp			
0.119046	1.00019	1.00002			1.00027	0.99562		8525			
(2) ISVm: [N(avg) N(avg)	÷NKF=IVm NK⊢	n] * [CTLm * (/Vm		CCFm] ILm	CPLm	CC⊢m	IS	Vm			
11889.6916 100		0.11889		99445	1.00027	0.99472		8269			
(3) Proving Factors	:										
	′p ÷ISVm =	1.0022	MF	Trans. Ser				Notes			
(2)	MF*CPL =	1.0022	CMF	Flow Callb					un 11894.887		
(3)	1÷ MF =	0.9978	MA	Density Ca	BID FACTOR			Sector 14			
	NKF÷MF =	99780	KF	Frequency							
(5)	KF ÷ CPL =	99780	CKF	Flowrate S Zero Verifi		Zeroed					
Repeatability: Uncertainty:	0.042 % 0.026 %			As Found	60	As Left					

Division: Area: County: State: CO Legal Desc:

	eter Data	1				uct Data				Proving Da	ta Current
	OL Hank			Nam Batch N	e Crude					101000	Current
м	ASTER_7				o. ∜y 45.2 °A	DI			Task ID	1456966128	1456966575
Factor Tracked	leter Facto	r(MF)			9 45.2 °A 12 60.0 °F	PI			Date	03/02/2016	03/02/2016
Temp Compensated	No				≈ 0.0 psi				Time	11:48	11:56
NKF 1	0000.0000	N/bbl				- Crude Oil	(2004)		Product	Crude	Crude
Manufacturer N	licroMotion	1	Ba	ase Densi	y 45.2 °A	PI	H	YC Y	Elowetto	50 bbl/hr	37 bbl/hr
Size		n							Totalizer		5733
Serial No. 1					Tole	rances					
Model No.	100		Tole	rance Typ	e: Rep	eatability			Throughput	21	5
-			Max	imum Dev	viation: 0.0	050 %			Base Density	42.5°API	45.2 °API
Pro	ver Data			bled? Y eria: 5		d? Y Min # consecutiv		s: 5	Switch Bar Temp	59.5	60.6
BPV	0.119046	bbl				r Deviation:	e runs		Avg Prvr Temp	66.7	68.4
	9.650	in		bled? N		ssed? Y F	rod Der	0? N	Avg Prvr Press	39.5	46.8
W. T.	0.890	in			Count Sou				Repeatability	0.026 %	0.012 %
					Count Use					1.0018	1.0015
Туре	Displacen	nent-Piston	Cut	Off Histor	/? N	Cutoff Date	9.		MF Variance		-0.0003
Serial No.	480				ctor Devia				wir vandii08	0.0002	-0.0003
Elasticity	2.8E7	1/psi	Ena	bled? N	Pas	ssed? Y F	Prod Dep	p? N	Liquid I	Properties a	at Metering
			Prov	/ing Mode		Volumetri	c			nditions fo	•
	1.92E-5	1/ºF	Den	sity Mode		Manual			Normal Op.	Due e e une	psig
External Shaft GI	9.6E-6	1/°F		. Method:		Avg. Data	Factor				
Certified				ing Metho		PIU			Eq. Vapor	CPL 1.00	psig
			Pas	ses Per R	un	1				CPL 1.00	00
Run	TEMPERAT	URE I Tm	PRESSU Pp	RE Pm	PU	LSES N	Run A	ccepted	? IMF		Flowrate bbl/hr
1	68.3	68.7	46.7	46.7		91.311	1	Yes	1.00150		37.202
2	68.3	68.7	46.8	46.8		0.852	2	Yes	1.00153		37.205
3	68.4	68.7 68.7	46.9	46.9		2.309	3 4	Yes	1.00139		37.231 37.202
4	68.4 68.4	68.7	46.8 46.8	46.8 46.8)1.237)1.384	4	Yes	1.00147 1.00145		37.202
Average	68.4	68.7	46.8	46.8		.4186	5	163	1.00143		37.102
1) GSVp: BPV * [C	TSn * CPS		n = CC	Enl							
BPV	CISp	CPSp		CILD	CPLp	CCHp		GSVp			
0.119046	1.00017	1.00002			1.00028	0.99599		18569			
2) ISVm: [N(avg)-	÷ NKF = IV	m] * [CTLm * (:PLm = (CCFml							
N(avg)	NKF	IVm	С	1Lm	CPLm	CCFm		svm			
11891.4186 100	000.0000	0.118914	0.9	99536	1.00029	0.99565	0.11	18397			
3) Proving Factors:	1			.				т			
	p ÷ISVm =		MF	Trans. Se Flow Callt				Notes			
(.) 001	MF * CPL =		CMF		allb Factor			sixth ru	in 11894.887		
(2)			MA	1							
(2) (3)	1÷MF =			_							
(2) (3) (4)	NKF÷MF =	99850	KF		y Set Point Set Point						
(2) (3) (4)		99850 99850		Frequency Flowrate 3 Zero Verif	Set Point	Zeroed					

.

Division: Area: County: State: CO Legal Desc:

м	eter Data	1			Prod	uct Data				Proving Dat	а
v	OL Hank			Nam	e Crude					1'revious	Current
м	ASTER_7			Batch No).				Task ID	1456962172	1456966128
	-	-(ME)	0	Obs. Gravit	y 42.5 °A	PI					
Factor Tracked N		r(1411*)		Obs. Temp	P 60.0 °F					03/02/2016	03/02/2016
Temp Compensated	NO 00000.0000) N/bbl		Obs. Pres					11110	10:42	11:48
NKF 1 Manufacturer M			_			- Crude Oi	. ,		Product	Crude	Crude
Manufacturer ₩ Size			Bi	ase Densit	y 42.5 °A	PI	HY	CY	Flowrate	62 bbl/hr	50 bbl/hr
Size Serial No. 1									Totalizer	5707	5728
Model No.						rances			Throughput	121	21
MOUEI NO.				rance Type		eatability			Base Density		42.5 °API
Pro	ver Data			dimum Devi							
.10	Data			bled? Y eria: 5		d? Y Min consecutiv		s: 5	Switch Bar Temp	58.7	59.5
BPV	0.119046	bbl					e runs		Avg Prvr Temp	65.5	66.7
I.D.	9.650	in	-			r Deviation:			Avg Prvr Press		39.5
WΤ	0.890	in		bled? N		ssed? Y i	Prod Dep	2 N	-		
Manufacturer				V X Factor (V X Factor (-gritte			Repeatability		0.026 %
Type		nent-Piston		Off History		Cutoff Dat	e:		MF	1.0016	1.0018
Serial No.				/ Meter Fa		tion:			MF Variance	0.0013	0.0002
Elasticity		1/psi		bled? N			Prod Dep	2 N		_	
Elasticity	2.027	11/201								Properties at	
Pine Ga	1.92E-5	1/ºF		ving Mode:		Volumetr	ic		Co	nditions for	CMF
External Shaft GI		1/°F		sity Mode:		Manual Avg. Data	Factor		Normal Op.	Pressure	psig
External Shart Gr Certified	3108-0			c. Method: vina Metho	d.	PIU	actor		Eq. Vapor	Pressure	psig
Centilled				ses Per Ru		1				CPL 1.0000	
	EMPERAT		PRESSU			LSES			ļ		Flowrate
Run	Тр	Tm	Pp	Pm	20	N	Run Ad	ccepted	? IMF		bbl/hr
1	66.6	67.9	39.5	39.5		0.749	1	Yes	1.00198		50.095
2	66.7	67.9	39.5	39.5		1.499	2	Yes	1.00187		50.066
3	66.7	67.9	39.5	39.5		2.312	3	Yes	1.00180		50.043
4	66.7 66.7	67.9 67.9	39.6 39.6	39.6 39.6		2.830 3.809	4	Yes Yes	1.00176		49.926 49.903
-	66.7 66.7	67.9 67.9	39.6	39.6		3.809 .2398	э	res	1.00167		49.903 50.006
Average					11092				1.00102		50.000
(1) GSVp: BPV * [C											
<i>ВРУ</i> 0.119046	C/Sp 1.00012	СР'Sp 1.00002		С <i>ILр</i> 9653 1	СРЪр .00023	СС+р 0.99690		GSVp 8677			
(2) ISVm: [N(avg)	+ NKF = IV	m] * [CTLm * (CPLm = (CCFm]							
N(avg)	NKF	IVm	С	1Lm	CI ² Lm	CC⊢m		Vm			
11892.2398 100		0.118922	2 0.9	99591	1.00023	0.99614	0.11	8463			
(3) Proving Factors	p ÷lSVm =	= 1.0018	MF	Trans. Ser				Notes			
., .			CMF	Flow Callb					in 11894.887		
>>>> (1) GSV			ONT	Density Ca	alib Factor			aixtin ft	11024.007		
>>>> (1) GSV	MF*CPL = 1÷MF =		MA								
>>> (1) GSV (2) (3)	MF * CPL =	0.9982	MA KF	Frequency	Set Point						
(1) GSV (2) (3) (4) 1	MF*CPL = 1÷MF =	= 0.9982 = 99820		Flowrate S	et Point						
(2) (3) (4)	MF*CPL = 1÷MF = NKF÷MF =	= 0.9982 = 99820 = 99820	KF		et Point	Zeroed As Left					

Division: Area: County: State: CO Legal Desc:

	ter Data L Hank			Name	Prod	uct Data				Proving Data	<u>Current</u>
MA	STER_7			Batch No.					Task ID	1455176870	1456962172
Factor Tracked Me	ter Factor	(ME)		bs. Gravity						02/10/2016	03/02/2016
Temp Compensated N		(Obs. Temp					2010	18:47	10:42
	0000.0000	N/bbl		Obs. Press		Cruste Ol	(2004)		Product		Crude
Manufacturer Mic	roMotion		B	API Table ase Density		- Crude Oil Pl		YC Y			
Size 1.0)0 in	1	-	iee benany	1210 11					16 bbl/hr	62 bbl/hr
Serial No. 144	28325				Tole	rances			Totalizer		5707
Model No. F1	00		Tole	rance Type		eatability			Throughput	3	121
	-		Max	imum Devi	ation: 0.0	050 %			Base Density	43.3°API	42.5 °API
Prov	er Data		Enai	bled? Y	Passe	d? Y Min i	‡ of Run	s: 5	Switch Bar Temp	64.9	58.7
BPV (0.119046	bbl	Crite	eria: 5 d	out of 5	consecutiv	e runs		Avg Prvr Temp	co.c	65.5
ID. 9		in	Avg	X Prev Me	ter Factoi	r Deviation:					
W.T. 0		in		bled? N		ssed? Y F	Prod Dep	p? N	Avg Prvr Press	38.9	47.9
Manufacturer				X Factor (5			Repeatability	0.027 %	0.036 %
		ent-Piston		X Factor (Off History)		ed: 0 Cutoff Date	ə.		MF	1.0003	1.0016
- 77	480	6111-1 131011		Meter Fac			e.		MF Variance	-0.0012	0.0013
Elasticity		1/psi		heter Fac bled? N			Prod De	n2 N			
Liasoury		17001	2/12		7 45					Properties at I	0
Pipe Ga	1.92E-5	1/ºF		ing Mode:		Volumetri Manual	с		Co	nditions for C	MF
External Shaft GI		1/°F		sity Mode: Method:		Avg. Data	Factor		Normal Op.	Pressure	psig
Certified				ing Method	1:	PIU			Eq. Vapor	Pressure	psig
			Pass	ses Per Ru	n	1				CPL 1.0000	
	MPERATU Tp		RESSU	RE Pm	PU	LSES N	Run A	ccepted	? IMF		Flowrate bbl/hr
			47.8	47.8	1188	8.075	1	Yes	1.00186		61.779
			48.0	48.0		0.689	2	Yes	1.00159		61.682
			48.0	48.0		2.342	3	Yes	1.00145		61.815
			47.7 47.8	47.7 47.8		1.720 8.429	4	Yes Yes	1.00145 1.00169		61.833 61.887
			47.9	47.9		.2510	5	163	1.00161		61.799
(1) GSVp: BPV * [CT		* CTI n * CDI		[n]							
(1) GSVp: BPV ~ [C1: BPV	C/Sp	CPSp		•р] С1Lp	CIPLD	CCHp		GSVp			
	1.00009	1.00002			.00028	0.99754	0.11	18753			
(2) ISVm: [N(avg)÷											
N(avg) 11890.2510 1000	NKF 00.0000	1Vm 0.118903	-	1Lm 99684 ·	CI*Lm 1.00028	0.99712		SVm 18561			
(3) Proving Factors:								-			
	÷ISVm =		MF	Trans. Seri: Flow Callb				Notes			
	F*CPL =		CMF	Density Calib				sixth n	un 11894.887		
(3) (4) NK	1÷MF =		MA	-							
	(F÷MF =		KF	Frequency				1			
	$F \div CPL =$	99840	CKE	Flowrate Se							
	F ÷ CPL = 0.036 %	00010	CKF	Zero Verifie As Found		Zeroed As Left					

Volumetrics Hank

flow measuring technology m/s m³/h I/min Calibration

WVP	Water flow rate in test bench with closed test section
Reference	electromagnetic flow rate meter
Measuring uncertainty	0.5 %
Calibration range	0.5 125 m³/h (equal to 0.018 4.42 m/s (at Di 100 mm))
Calibration medium	water

Calibration / Measuring uncertainty / Recalibration

Höntzsch is able to carry out an optimally tailored calibration for every type of operation. As close an approximation as possible to the real conditions is achieved using a variation of pressure, temperature and type of calibration medium.

This ideal choice of calibration conditions means that measuring uncertainties in practical applications are reduced to a minimum. Höntzsch calibration certificates document the set value and actual value and provide the user with proof and reliability that faultless and accurate measuring equipment is in use for solving measuring problems.

The measuring uncertainties for the references are relative values.

The measuring uncertainties shown on the calibration certificate are determined according to the "GUDE OF EXPRESSION OF UNCERTAINTY IN MEASUREMENT". The expanded measurement uncertainties result from the standard measurement uncertainties being multiplied with the coverage factor k = 2. The value of the measurable variable lies as a rule with a probability of approx. 95 % within the respective value interval.

It must be pointed out that additional measuring uncertainties can arise from modified application conditions. Influencing factors are, for example, pressure, temperature, flow profile and the degree of turbulence of the flow to be measured. Details regarding measuring uncertainty of each measuring system can be found in the relevant data specification.

It is the responsibility of the user to determine the re-calibration interval. The intervals should be chosen so that the re-calibration takes place before a significant change in the medium for the measurement problem. Please take into account the specific application conditions, environmental influences and the extent of potential secondary damage caused by values outside the specified tolerance.

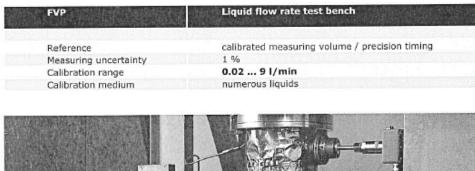
Standards, directives or legal requirements can also determine the right time for a re-calibration.

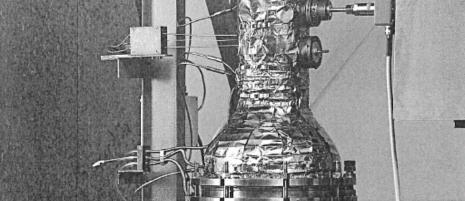
Höntzsc	h GmbH		
Gottlieb-I	Daimler-Straße 37		
D-71334	Waiblingen (Hegnach)		zertifiziert nach
Telefon	+49 7151 / 17 16-0		ISO 9001 : 2008
Telefax	+49 7151 / 5 84 02		certified quality
E-Mail	info@hoentzsch.com		certained quality
Internet	www.hoentzsch.com	Subject to alteration	

http://www.hoentzsch.com

U325_Kal_D_e_110718

Calibration	m/s	m³/h	l/min	höntzsch
建建制的原始和	國家國	法运动制	新新新新	flow measuring technology


HDVP	High pressure flow rate test bench in closed construction
Reference	DKD calibrated transfer measurement standards
Measuring uncertainty	1 %
Calibration range	0.22 4000 m3/h *(0.10 220 Nm/s)
Pressure range	1000 10000 hPa
Temperature range	+20 +45 °C
Calibration medium	air
* calculated from flow rate ar with the respective profile f	


 \mathbf{O}

0

1.20

RVP	Real gas flow rate test bench
Reference	LDA calibrated transfer measurement standards
Measuring uncertainty	0.8 %
Calibration range Pressure range	0.06 100 m³/h *(0.08 150 Nm/s) 1000 10000 hPa
Calibration medium	numerous gases
* calculated from flow rate and	d average flow velocity

High temperature flow test facility HTP in closed construction 'University of Stuttgart'

U325_Kal_D_e_110718

http://www.hoentzsch.com

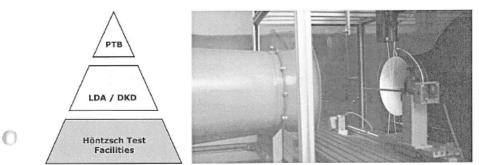
flow measuring technology m/s m³/h l/min Calibration

WK320	Göttinger free jet wind tunnel
Reference	laser Doppler anemometer (LDA)
Measuring uncertainty	0.3 %
Calibration range	0.18 70 m/s
Calibration medium	air

WK320 / Transfer	Göttinger free jet wind tunnel	
Reference	LDA calibrated transfer measurement standards	
Measuring uncertainty	0.6 %	
Calibration range	0.18 70 m/s	
Calibration medium	air	

WK130 / Transfer	Free jet wind tunnel
Reference	LDA calibrated transfer measurement standards
Measuring uncertainty	0.6 %
Calibration range	0.35 30 m/s
Calibration medium	air

NWK	Low velocity wind tunnel with closed test section
Reference	LDA calibrated transfer measurement standards
Measuring uncertainty	0.6 %
Calibration range	0.10 5.0 m/s
Calibration medium	air


HTP	High temperature flow test bench in closed construction 'University of Stuttgart'
Reference	LDA calibrated transfer measurement standards
Measuring uncertainty	3 % (0.18 2.0 m/s); 2 % (> 2.0 m/s)
Calibration range	0.18 70 m/s
Temperature range	+20 +400 °C
Calibration medium	air

http://www.hoentzsch.com

U325_Kal_D_e_110718

Calibration m/s m³/h I/min höntzsch flow measuring technology

Calibration of flow velocity and flow rate

Free jet wind tunnel WK320 with laser Doppler anemometer (LDA)

The Höntzsch calibration system

The Höntzsch calibration process is incorporated in the Quality Management Systems QMS DIN EN ISO 9001:2008 and is carried out in close compliance with ISO/IEC/EN 17025. All Höntzsch calibrations can be attributed to national measurement standards.

Ensuring global uniformity of dimensions, Höntzsch GmbH works closely with other national and international metrological institutes. Exchange of research findings and extensive international comparisons have proved successful.

Höntzsch works resolutely and in close collaboration with national and international accredited laboratories to further develop calibration methods and reduce measuring uncertainties.

O

Calibration equipment	· · · · · · · · · · · · · · · · · · ·	
Description	Abbreviation	
Free jet wind tunnel	WK320 / LDA	
Free jet wind tunnel	WK320 / Transfer	
Free jet wind tunnel	WK130 / Transfer	
Low velocity wind tunnel	NWK	
High temperature flow test bench	HTP	
High pressure flow rate test bench	HDVP	
Real gas flow rate test bench	RVP	
Liquid flow rate test bench	FVP	
Water flow rate test bench	WVP	

U325_Kal_D_e_110718

http://www.hoentzsch.com

1/4

Hoentzsch Certificate